利用近端F/T测量来实现iCub主动顺应性

M. Fumagalli, M. Randazzo, F. Nori, L. Natale, G. Metta, G. Sandini
{"title":"利用近端F/T测量来实现iCub主动顺应性","authors":"M. Fumagalli, M. Randazzo, F. Nori, L. Natale, G. Metta, G. Sandini","doi":"10.1109/IROS.2010.5651421","DOIUrl":null,"url":null,"abstract":"During the last decades, interaction (with humans and with the environment) has become an increasingly interesting topic of research within the field of robotics. At the basis of interaction, a fundamental role is played by the ability to actively regulate the interaction forces. In this paper we propose a technique for controlling the interaction forces exploiting a proximal six axes force/torque sensor. The major assumption is the knowledge of the point where external forces are applied. The proposed approach is tested and validated on the four limbs of the iCub, a humanoid robot designed for research in embodied cognition. Remarkably, the proposed approach can be used to implement active compliance in other non passively back-drivable manipulators by simply inserting one or more force/torque sensor anywhere along the kinematic chain.","PeriodicalId":420658,"journal":{"name":"2010 IEEE/RSJ International Conference on Intelligent Robots and Systems","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Exploiting proximal F/T measurements for the iCub active compliance\",\"authors\":\"M. Fumagalli, M. Randazzo, F. Nori, L. Natale, G. Metta, G. Sandini\",\"doi\":\"10.1109/IROS.2010.5651421\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"During the last decades, interaction (with humans and with the environment) has become an increasingly interesting topic of research within the field of robotics. At the basis of interaction, a fundamental role is played by the ability to actively regulate the interaction forces. In this paper we propose a technique for controlling the interaction forces exploiting a proximal six axes force/torque sensor. The major assumption is the knowledge of the point where external forces are applied. The proposed approach is tested and validated on the four limbs of the iCub, a humanoid robot designed for research in embodied cognition. Remarkably, the proposed approach can be used to implement active compliance in other non passively back-drivable manipulators by simply inserting one or more force/torque sensor anywhere along the kinematic chain.\",\"PeriodicalId\":420658,\"journal\":{\"name\":\"2010 IEEE/RSJ International Conference on Intelligent Robots and Systems\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE/RSJ International Conference on Intelligent Robots and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IROS.2010.5651421\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE/RSJ International Conference on Intelligent Robots and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2010.5651421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

在过去的几十年里,交互(与人类和环境)已经成为机器人领域研究的一个越来越有趣的话题。在相互作用的基础上,积极调节相互作用力量的能力起着根本性的作用。在本文中,我们提出了一种利用近六轴力/扭矩传感器控制相互作用力的技术。主要的假设是外力作用点的知识。该方法在iCub的四肢上进行了测试和验证,iCub是一种用于具身认知研究的类人机器人。值得注意的是,所提出的方法可以通过简单地沿运动链插入一个或多个力/扭矩传感器来实现其他非被动反向驱动机械手的主动顺应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploiting proximal F/T measurements for the iCub active compliance
During the last decades, interaction (with humans and with the environment) has become an increasingly interesting topic of research within the field of robotics. At the basis of interaction, a fundamental role is played by the ability to actively regulate the interaction forces. In this paper we propose a technique for controlling the interaction forces exploiting a proximal six axes force/torque sensor. The major assumption is the knowledge of the point where external forces are applied. The proposed approach is tested and validated on the four limbs of the iCub, a humanoid robot designed for research in embodied cognition. Remarkably, the proposed approach can be used to implement active compliance in other non passively back-drivable manipulators by simply inserting one or more force/torque sensor anywhere along the kinematic chain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信