面向分类数据空间的可解释规则集成算法

Mohamed Azmi, A. Berrado
{"title":"面向分类数据空间的可解释规则集成算法","authors":"Mohamed Azmi, A. Berrado","doi":"10.1109/SITA.2015.7358390","DOIUrl":null,"url":null,"abstract":"With the rapid growth of big data technology, classification plays an increasingly important role in decision making in many research areas. Several studies have been made in recent years to improve the accuracy-interpretability of classification models. In this paper, we present and discuss different classification methods, Random Forest, Boosting, CBA (Classification Based on Association) and Rulefit. We discuss the advantages and the limitations of each algorithm and finally we introduce a prototype model that combines some advantages that characterize the presented algorithms.","PeriodicalId":174405,"journal":{"name":"2015 10th International Conference on Intelligent Systems: Theories and Applications (SITA)","volume":"210 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Towards an interpretable Rules Ensemble algorithm for classification in a categorical data space\",\"authors\":\"Mohamed Azmi, A. Berrado\",\"doi\":\"10.1109/SITA.2015.7358390\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rapid growth of big data technology, classification plays an increasingly important role in decision making in many research areas. Several studies have been made in recent years to improve the accuracy-interpretability of classification models. In this paper, we present and discuss different classification methods, Random Forest, Boosting, CBA (Classification Based on Association) and Rulefit. We discuss the advantages and the limitations of each algorithm and finally we introduce a prototype model that combines some advantages that characterize the presented algorithms.\",\"PeriodicalId\":174405,\"journal\":{\"name\":\"2015 10th International Conference on Intelligent Systems: Theories and Applications (SITA)\",\"volume\":\"210 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 10th International Conference on Intelligent Systems: Theories and Applications (SITA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SITA.2015.7358390\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 10th International Conference on Intelligent Systems: Theories and Applications (SITA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SITA.2015.7358390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

随着大数据技术的快速发展,分类在许多研究领域的决策中发挥着越来越重要的作用。为了提高分类模型的准确率和可解释性,近年来进行了一些研究。在本文中,我们提出并讨论了不同的分类方法,随机森林,增强,CBA(基于关联的分类)和规则拟合。我们讨论了每种算法的优点和局限性,最后我们介绍了一个原型模型,该模型结合了所提出算法的一些优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards an interpretable Rules Ensemble algorithm for classification in a categorical data space
With the rapid growth of big data technology, classification plays an increasingly important role in decision making in many research areas. Several studies have been made in recent years to improve the accuracy-interpretability of classification models. In this paper, we present and discuss different classification methods, Random Forest, Boosting, CBA (Classification Based on Association) and Rulefit. We discuss the advantages and the limitations of each algorithm and finally we introduce a prototype model that combines some advantages that characterize the presented algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信