mmSight:面向手持设备的稳健毫米波成像

Jacqueline M. Schellberg, Hem Regmi, Sanjib Sur
{"title":"mmSight:面向手持设备的稳健毫米波成像","authors":"Jacqueline M. Schellberg, Hem Regmi, Sanjib Sur","doi":"10.1109/WoWMoM57956.2023.00026","DOIUrl":null,"url":null,"abstract":"We propose mmSight, a system that enables Synthetic Aperture Radar (SAR) imaging on handheld millimeter-wave (mmWave) devices. SAR imaging requires precise device self-localization or bulky motion controllers to reconstruct an image, but standard handheld devices suffer from various pose errors that cannot be addressed with traditional motion compensation methods. mmSight uses the time delay of the reflected mmWave signals across separated antennas to limit the pose error and perform improved mobile mmWave imaging. Since the mmWave signals are fundamentally limited by specularity and weak reflectivity, even a perfect pose correction may not yield a perceptible image. To this end, mmSight employs a generative learning model to learn the relationship between the imperceptible 3D image and a discernable 2D image and automatically classifies objects into several categories. We show that mmSight improves the structural quality of the mmWave images from 0.01 to 0.92, and it can be leveraged to identify several common hidden objects.","PeriodicalId":132845,"journal":{"name":"2023 IEEE 24th International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM)","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"mmSight: Towards Robust Millimeter-Wave Imaging on Handheld Devices\",\"authors\":\"Jacqueline M. Schellberg, Hem Regmi, Sanjib Sur\",\"doi\":\"10.1109/WoWMoM57956.2023.00026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose mmSight, a system that enables Synthetic Aperture Radar (SAR) imaging on handheld millimeter-wave (mmWave) devices. SAR imaging requires precise device self-localization or bulky motion controllers to reconstruct an image, but standard handheld devices suffer from various pose errors that cannot be addressed with traditional motion compensation methods. mmSight uses the time delay of the reflected mmWave signals across separated antennas to limit the pose error and perform improved mobile mmWave imaging. Since the mmWave signals are fundamentally limited by specularity and weak reflectivity, even a perfect pose correction may not yield a perceptible image. To this end, mmSight employs a generative learning model to learn the relationship between the imperceptible 3D image and a discernable 2D image and automatically classifies objects into several categories. We show that mmSight improves the structural quality of the mmWave images from 0.01 to 0.92, and it can be leveraged to identify several common hidden objects.\",\"PeriodicalId\":132845,\"journal\":{\"name\":\"2023 IEEE 24th International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM)\",\"volume\":\"108 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 24th International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WoWMoM57956.2023.00026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 24th International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WoWMoM57956.2023.00026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出mmSight,这是一种能够在手持毫米波设备上实现合成孔径雷达(SAR)成像的系统。SAR成像需要精确的设备自我定位或笨重的运动控制器来重建图像,但标准手持设备存在各种姿势误差,这些误差无法用传统的运动补偿方法解决。mmSight通过分离天线反射毫米波信号的时间延迟来限制姿态误差,并执行改进的移动毫米波成像。由于毫米波信号从根本上受到镜面和弱反射率的限制,即使是完美的姿势校正也可能无法产生可感知的图像。为此,mmSight采用生成式学习模型来学习不可感知的3D图像和可识别的2D图像之间的关系,并自动将物体分为几类。我们发现mmSight将毫米波图像的结构质量从0.01提高到0.92,并且可以利用它来识别几种常见的隐藏物体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
mmSight: Towards Robust Millimeter-Wave Imaging on Handheld Devices
We propose mmSight, a system that enables Synthetic Aperture Radar (SAR) imaging on handheld millimeter-wave (mmWave) devices. SAR imaging requires precise device self-localization or bulky motion controllers to reconstruct an image, but standard handheld devices suffer from various pose errors that cannot be addressed with traditional motion compensation methods. mmSight uses the time delay of the reflected mmWave signals across separated antennas to limit the pose error and perform improved mobile mmWave imaging. Since the mmWave signals are fundamentally limited by specularity and weak reflectivity, even a perfect pose correction may not yield a perceptible image. To this end, mmSight employs a generative learning model to learn the relationship between the imperceptible 3D image and a discernable 2D image and automatically classifies objects into several categories. We show that mmSight improves the structural quality of the mmWave images from 0.01 to 0.92, and it can be leveraged to identify several common hidden objects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信