机动目标随机积分滤波与Unscented卡尔曼滤波的比较

Erik Blasch, J. Duník, O. Straka, M. Simandl
{"title":"机动目标随机积分滤波与Unscented卡尔曼滤波的比较","authors":"Erik Blasch, J. Duník, O. Straka, M. Simandl","doi":"10.1109/NAECON.2014.7045791","DOIUrl":null,"url":null,"abstract":"Sigma-Point Filtering (SPF) has become popular to increase the accuracy in estimation of tracking parameters such as the mean and variance. A recent development in SPF is the stochastic integration filter (SIF) which has shown to increase estimation over the Extended Kalman Filter (EKF) and the Unscented Kalman filter (UKF); however, we want to explore the notion of the SIF versus the UKF for maneuvering targets. In this paper, we compare the SIF method with that of the KF, EKF, and UKF, using the Average Normalized Estimation Error Square (ANEES) for non-linear, non-Gaussian tracking. When the nonlinear turn-rate model is similar to the linear constant velocity model, all methods are the same. When the turn-rate model differs from the constant-velocity model, our results show that the UKF with a large number of sigma-points performs better than the SIF.","PeriodicalId":318539,"journal":{"name":"NAECON 2014 - IEEE National Aerospace and Electronics Conference","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Comparison of stochastic integration filter with the Unscented Kalman filter for maneuvering targets\",\"authors\":\"Erik Blasch, J. Duník, O. Straka, M. Simandl\",\"doi\":\"10.1109/NAECON.2014.7045791\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sigma-Point Filtering (SPF) has become popular to increase the accuracy in estimation of tracking parameters such as the mean and variance. A recent development in SPF is the stochastic integration filter (SIF) which has shown to increase estimation over the Extended Kalman Filter (EKF) and the Unscented Kalman filter (UKF); however, we want to explore the notion of the SIF versus the UKF for maneuvering targets. In this paper, we compare the SIF method with that of the KF, EKF, and UKF, using the Average Normalized Estimation Error Square (ANEES) for non-linear, non-Gaussian tracking. When the nonlinear turn-rate model is similar to the linear constant velocity model, all methods are the same. When the turn-rate model differs from the constant-velocity model, our results show that the UKF with a large number of sigma-points performs better than the SIF.\",\"PeriodicalId\":318539,\"journal\":{\"name\":\"NAECON 2014 - IEEE National Aerospace and Electronics Conference\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NAECON 2014 - IEEE National Aerospace and Electronics Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAECON.2014.7045791\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAECON 2014 - IEEE National Aerospace and Electronics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAECON.2014.7045791","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

为了提高跟踪参数(如均值和方差)估计的准确性,Sigma-Point滤波(SPF)已成为一种流行的方法。SPF的最新发展是随机积分滤波器(SIF),它已经显示出比扩展卡尔曼滤波器(EKF)和无气味卡尔曼滤波器(UKF)增加估计;然而,我们想要探索机动目标的SIF与UKF的概念。在本文中,我们将SIF方法与KF, EKF和UKF方法进行比较,使用平均归一化估计误差平方(ANEES)进行非线性,非高斯跟踪。当非线性周转率模型与线性恒速模型相似时,所有方法都是相同的。当周转率模型与等速模型不同时,我们的结果表明,具有大量sigma点的UKF比SIF性能更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison of stochastic integration filter with the Unscented Kalman filter for maneuvering targets
Sigma-Point Filtering (SPF) has become popular to increase the accuracy in estimation of tracking parameters such as the mean and variance. A recent development in SPF is the stochastic integration filter (SIF) which has shown to increase estimation over the Extended Kalman Filter (EKF) and the Unscented Kalman filter (UKF); however, we want to explore the notion of the SIF versus the UKF for maneuvering targets. In this paper, we compare the SIF method with that of the KF, EKF, and UKF, using the Average Normalized Estimation Error Square (ANEES) for non-linear, non-Gaussian tracking. When the nonlinear turn-rate model is similar to the linear constant velocity model, all methods are the same. When the turn-rate model differs from the constant-velocity model, our results show that the UKF with a large number of sigma-points performs better than the SIF.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信