基于最大最小聚类变异技术的乳胶手套蛋白检测

H. Ting, C. Ong, K. Sim, C. Tso
{"title":"基于最大最小聚类变异技术的乳胶手套蛋白检测","authors":"H. Ting, C. Ong, K. Sim, C. Tso","doi":"10.1109/CITISIA.2009.5224200","DOIUrl":null,"url":null,"abstract":"An improvement to previously proposed maximum-minimum variation (MMV) test for protein levels quantification is reported. The additional process is artefacts segmentation in latex glove sample by using k-means clustering algorithm. The new proposed maximum-minimum clustering variation (MMCV) technique, give significantly better results in terms of consistency and accuracy than existing methods.","PeriodicalId":144722,"journal":{"name":"2009 Innovative Technologies in Intelligent Systems and Industrial Applications","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Latex glove protein detection using maximum-minimum clustering variation technique\",\"authors\":\"H. Ting, C. Ong, K. Sim, C. Tso\",\"doi\":\"10.1109/CITISIA.2009.5224200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An improvement to previously proposed maximum-minimum variation (MMV) test for protein levels quantification is reported. The additional process is artefacts segmentation in latex glove sample by using k-means clustering algorithm. The new proposed maximum-minimum clustering variation (MMCV) technique, give significantly better results in terms of consistency and accuracy than existing methods.\",\"PeriodicalId\":144722,\"journal\":{\"name\":\"2009 Innovative Technologies in Intelligent Systems and Industrial Applications\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Innovative Technologies in Intelligent Systems and Industrial Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CITISIA.2009.5224200\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Innovative Technologies in Intelligent Systems and Industrial Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CITISIA.2009.5224200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

对先前提出的蛋白水平定量的最大-最小变异(MMV)测试进行了改进。附加的步骤是使用k-means聚类算法对乳胶手套样本进行人工分割。新提出的最大最小聚类变化(MMCV)技术在一致性和准确性方面明显优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Latex glove protein detection using maximum-minimum clustering variation technique
An improvement to previously proposed maximum-minimum variation (MMV) test for protein levels quantification is reported. The additional process is artefacts segmentation in latex glove sample by using k-means clustering algorithm. The new proposed maximum-minimum clustering variation (MMCV) technique, give significantly better results in terms of consistency and accuracy than existing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信