分析了MSVMO方法-支持向量机的概率输出

A. Madevska-Bogdanova, Z. Popeska, D. Nikolik
{"title":"分析了MSVMO方法-支持向量机的概率输出","authors":"A. Madevska-Bogdanova, Z. Popeska, D. Nikolik","doi":"10.1109/ITI.2005.1491157","DOIUrl":null,"url":null,"abstract":"Number of experiments has shown that for classification problems, if SVM models trained over the same data set have similar SVM outputs with respect to a given input vector x, the values of the corresponding MSVMO probabilities [3] have small differences. This means that the information from the MSVMO method from different SVM models trained over the same data set is essentially the same.","PeriodicalId":392003,"journal":{"name":"27th International Conference on Information Technology Interfaces, 2005.","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of the MSVMO method - the probabilistic SVM outputs\",\"authors\":\"A. Madevska-Bogdanova, Z. Popeska, D. Nikolik\",\"doi\":\"10.1109/ITI.2005.1491157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Number of experiments has shown that for classification problems, if SVM models trained over the same data set have similar SVM outputs with respect to a given input vector x, the values of the corresponding MSVMO probabilities [3] have small differences. This means that the information from the MSVMO method from different SVM models trained over the same data set is essentially the same.\",\"PeriodicalId\":392003,\"journal\":{\"name\":\"27th International Conference on Information Technology Interfaces, 2005.\",\"volume\":\"100 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"27th International Conference on Information Technology Interfaces, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITI.2005.1491157\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"27th International Conference on Information Technology Interfaces, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITI.2005.1491157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大量实验表明,对于分类问题,如果在同一数据集上训练的SVM模型相对于给定的输入向量x具有相似的SVM输出,则相应的MSVMO概率值[3]差异较小。这意味着在同一数据集上训练的不同SVM模型的MSVMO方法的信息本质上是相同的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of the MSVMO method - the probabilistic SVM outputs
Number of experiments has shown that for classification problems, if SVM models trained over the same data set have similar SVM outputs with respect to a given input vector x, the values of the corresponding MSVMO probabilities [3] have small differences. This means that the information from the MSVMO method from different SVM models trained over the same data set is essentially the same.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信