XST:一种用于高效持续学习的交叉柱式稀疏训练

Fan Zhang, Li Yang, Jian Meng, Jae-sun Seo, Yu Cao, Deliang Fan
{"title":"XST:一种用于高效持续学习的交叉柱式稀疏训练","authors":"Fan Zhang, Li Yang, Jian Meng, Jae-sun Seo, Yu Cao, Deliang Fan","doi":"10.23919/DATE54114.2022.9774660","DOIUrl":null,"url":null,"abstract":"Leveraging the ReRAM crossbar-based In-Memory-Computing (IMC) to accelerate single task DNN inference has been widely studied. However, using the ReRAM crossbar for continual learning has not been explored yet. In this work, we propose XST, a novel crossbar column-wise sparse training framework for continual learning. XST significantly reduces the training cost and saves inference energy. More importantly, it is friendly to existing crossbar-based convolution engine with almost no hardware overhead. Compared with the state-of-the-art CPG method, the experiments show that XST's accuracy achieves 4.95 % higher accuracy. Furthermore, XST demonstrates ~5.59 × training speedup and 1.5 × inference energy-saving.","PeriodicalId":232583,"journal":{"name":"2022 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"XST: A Crossbar Column-wise Sparse Training for Efficient Continual Learning\",\"authors\":\"Fan Zhang, Li Yang, Jian Meng, Jae-sun Seo, Yu Cao, Deliang Fan\",\"doi\":\"10.23919/DATE54114.2022.9774660\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Leveraging the ReRAM crossbar-based In-Memory-Computing (IMC) to accelerate single task DNN inference has been widely studied. However, using the ReRAM crossbar for continual learning has not been explored yet. In this work, we propose XST, a novel crossbar column-wise sparse training framework for continual learning. XST significantly reduces the training cost and saves inference energy. More importantly, it is friendly to existing crossbar-based convolution engine with almost no hardware overhead. Compared with the state-of-the-art CPG method, the experiments show that XST's accuracy achieves 4.95 % higher accuracy. Furthermore, XST demonstrates ~5.59 × training speedup and 1.5 × inference energy-saving.\",\"PeriodicalId\":232583,\"journal\":{\"name\":\"2022 Design, Automation & Test in Europe Conference & Exhibition (DATE)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Design, Automation & Test in Europe Conference & Exhibition (DATE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/DATE54114.2022.9774660\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/DATE54114.2022.9774660","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

利用基于ReRAM交叉栏的内存计算(IMC)来加速单任务深度神经网络推理已经得到了广泛的研究。然而,利用ReRAM交叉杆进行持续学习的方法尚未得到探索。在这项工作中,我们提出了XST,一种用于持续学习的新型交叉栏式稀疏训练框架。XST显著降低了训练成本,节省了推理能量。更重要的是,它与现有的基于交叉条的卷积引擎友好,几乎没有硬件开销。实验结果表明,与目前最先进的CPG方法相比,XST的精度提高了4.95%。此外,XST的训练速度提高了5.59倍,推理效率提高了1.5倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
XST: A Crossbar Column-wise Sparse Training for Efficient Continual Learning
Leveraging the ReRAM crossbar-based In-Memory-Computing (IMC) to accelerate single task DNN inference has been widely studied. However, using the ReRAM crossbar for continual learning has not been explored yet. In this work, we propose XST, a novel crossbar column-wise sparse training framework for continual learning. XST significantly reduces the training cost and saves inference energy. More importantly, it is friendly to existing crossbar-based convolution engine with almost no hardware overhead. Compared with the state-of-the-art CPG method, the experiments show that XST's accuracy achieves 4.95 % higher accuracy. Furthermore, XST demonstrates ~5.59 × training speedup and 1.5 × inference energy-saving.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信