用快速全三维重建算法评估图像质量

M. Daube-Witherspoon, S. Matej, J. Karp
{"title":"用快速全三维重建算法评估图像质量","authors":"M. Daube-Witherspoon, S. Matej, J. Karp","doi":"10.1109/NSSMIC.2001.1009269","DOIUrl":null,"url":null,"abstract":"True three-dimensional (3D) reconstructions from fully 3D positron emission tomography (PET) data yield high-quality images but at a high computational cost. Image representation using three-dimensional spherically-symmetric basis functions on a body-centered cubic (BCC) grid, as opposed to a simple cubic (SC) grid, can reduce the computational demands of a 3D approach without compromising image quality by reducing the number of image elements to be reconstructed. The goal of this study was to determine if the image quality improvements predicted for the 3D row action maximum likelihood algorithm (RAMLA) over 2.5D RAMLA after Fourier rebinning (FORE) would be seen with clinical PET data. Torso phantom, whole-body patient, and brain patient studies were used in this analysis. Data were corrected for detector efficiency, scatter, and randoms prior to reconstruction. Attenuation effects were either incorporated into the system model or pre-corrected prior to reconstruction. Higher contrast at comparable noise levels (or lower noise for comparable contrast) are seen with 3D RAMLA (SC or BCC grid) for both phantom and patient data. The brain patient data show improved axial resolution with 3D RAMLA, where the degradation in resolution with FORE is eliminated. Application of a fully 3D reconstruction algorithm is possible in clinically reasonable times.","PeriodicalId":159123,"journal":{"name":"2001 IEEE Nuclear Science Symposium Conference Record (Cat. No.01CH37310)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Assessment of image quality with a fast fully 3D reconstruction algorithm\",\"authors\":\"M. Daube-Witherspoon, S. Matej, J. Karp\",\"doi\":\"10.1109/NSSMIC.2001.1009269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"True three-dimensional (3D) reconstructions from fully 3D positron emission tomography (PET) data yield high-quality images but at a high computational cost. Image representation using three-dimensional spherically-symmetric basis functions on a body-centered cubic (BCC) grid, as opposed to a simple cubic (SC) grid, can reduce the computational demands of a 3D approach without compromising image quality by reducing the number of image elements to be reconstructed. The goal of this study was to determine if the image quality improvements predicted for the 3D row action maximum likelihood algorithm (RAMLA) over 2.5D RAMLA after Fourier rebinning (FORE) would be seen with clinical PET data. Torso phantom, whole-body patient, and brain patient studies were used in this analysis. Data were corrected for detector efficiency, scatter, and randoms prior to reconstruction. Attenuation effects were either incorporated into the system model or pre-corrected prior to reconstruction. Higher contrast at comparable noise levels (or lower noise for comparable contrast) are seen with 3D RAMLA (SC or BCC grid) for both phantom and patient data. The brain patient data show improved axial resolution with 3D RAMLA, where the degradation in resolution with FORE is eliminated. Application of a fully 3D reconstruction algorithm is possible in clinically reasonable times.\",\"PeriodicalId\":159123,\"journal\":{\"name\":\"2001 IEEE Nuclear Science Symposium Conference Record (Cat. No.01CH37310)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2001 IEEE Nuclear Science Symposium Conference Record (Cat. No.01CH37310)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NSSMIC.2001.1009269\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2001 IEEE Nuclear Science Symposium Conference Record (Cat. No.01CH37310)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSSMIC.2001.1009269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

真正的三维(3D)重建从全三维正电子发射断层扫描(PET)数据产生高质量的图像,但在高计算成本。在体心立方(BCC)网格上使用三维球对称基函数表示图像,而不是简单的立方(SC)网格,可以减少3D方法的计算需求,而不会通过减少要重建的图像元素的数量而影响图像质量。本研究的目的是确定在傅里叶重建(FORE)后,3D行作用最大似然算法(RAMLA)预测的图像质量改善是否可以在临床PET数据中看到。本分析采用躯干幻像、全身患者和脑部患者研究。在重建之前,对数据进行了检测器效率、散射和随机性的校正。衰减效应要么被纳入系统模型,要么在重建之前进行预校正。使用3D RAMLA (SC或BCC网格)可以看到幻影和患者数据在可比较的噪声水平下具有更高的对比度(或在可比较的对比度下具有更低的噪声)。脑部患者数据显示3D RAMLA改善了轴向分辨率,其中FORE消除了分辨率下降。在临床合理的时间内应用全三维重建算法是可能的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assessment of image quality with a fast fully 3D reconstruction algorithm
True three-dimensional (3D) reconstructions from fully 3D positron emission tomography (PET) data yield high-quality images but at a high computational cost. Image representation using three-dimensional spherically-symmetric basis functions on a body-centered cubic (BCC) grid, as opposed to a simple cubic (SC) grid, can reduce the computational demands of a 3D approach without compromising image quality by reducing the number of image elements to be reconstructed. The goal of this study was to determine if the image quality improvements predicted for the 3D row action maximum likelihood algorithm (RAMLA) over 2.5D RAMLA after Fourier rebinning (FORE) would be seen with clinical PET data. Torso phantom, whole-body patient, and brain patient studies were used in this analysis. Data were corrected for detector efficiency, scatter, and randoms prior to reconstruction. Attenuation effects were either incorporated into the system model or pre-corrected prior to reconstruction. Higher contrast at comparable noise levels (or lower noise for comparable contrast) are seen with 3D RAMLA (SC or BCC grid) for both phantom and patient data. The brain patient data show improved axial resolution with 3D RAMLA, where the degradation in resolution with FORE is eliminated. Application of a fully 3D reconstruction algorithm is possible in clinically reasonable times.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信