GaN HEMT结温对金刚石衬底各向异性和热边界电阻的依赖

H. Nochetto, Nicholas R. Jankowski, A. Bar-Cohen
{"title":"GaN HEMT结温对金刚石衬底各向异性和热边界电阻的依赖","authors":"H. Nochetto, Nicholas R. Jankowski, A. Bar-Cohen","doi":"10.1109/CSICS.2012.6340106","DOIUrl":null,"url":null,"abstract":"A thermal model of Gallium Nitride High Electron Mobility Transistors (GaN HEMTs) examines the impact of diamond substrate parameters on device thermal performance. These parameters include substrate thickness, GaN-substrate thermal boundary resistance (TBR), and a simplified anisotropic substrate thermal conductivity. Diamond substrates appear to only provide thermal improvement over GaN-on-Silicon Carbide (SIC) devices when the corresponding GaN-on-diamond TBR is not substantially larger than the GaN-on-SiC range, independent of the degree of substrate anisotropy. The reduced lateral conductivity due to substrate anisotropy also proves to be of less significance to substrate thermal resistance when vertical conductivity is very high, but decreased spreading in the substrate can significantly impact cold plate temperature rise. Finally, for any degree of anisotropy, substrates thinner than 150μm are shown to significantly increase cold plate temperature rise as they restrict heat spreading and impose higher heat fluxes to downstream components.","PeriodicalId":290079,"journal":{"name":"2012 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"GaN HEMT Junction Temperature Dependence on Diamond Substrate Anisotropy and Thermal Boundary Resistance\",\"authors\":\"H. Nochetto, Nicholas R. Jankowski, A. Bar-Cohen\",\"doi\":\"10.1109/CSICS.2012.6340106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A thermal model of Gallium Nitride High Electron Mobility Transistors (GaN HEMTs) examines the impact of diamond substrate parameters on device thermal performance. These parameters include substrate thickness, GaN-substrate thermal boundary resistance (TBR), and a simplified anisotropic substrate thermal conductivity. Diamond substrates appear to only provide thermal improvement over GaN-on-Silicon Carbide (SIC) devices when the corresponding GaN-on-diamond TBR is not substantially larger than the GaN-on-SiC range, independent of the degree of substrate anisotropy. The reduced lateral conductivity due to substrate anisotropy also proves to be of less significance to substrate thermal resistance when vertical conductivity is very high, but decreased spreading in the substrate can significantly impact cold plate temperature rise. Finally, for any degree of anisotropy, substrates thinner than 150μm are shown to significantly increase cold plate temperature rise as they restrict heat spreading and impose higher heat fluxes to downstream components.\",\"PeriodicalId\":290079,\"journal\":{\"name\":\"2012 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSICS.2012.6340106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSICS.2012.6340106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

利用氮化镓高电子迁移率晶体管(GaN HEMTs)的热模型研究了金刚石衬底参数对器件热性能的影响。这些参数包括衬底厚度、gan -衬底热边界电阻(TBR)和简化的各向异性衬底导热系数。与衬底各向异性的程度无关,金刚石衬底似乎只有在相应的GaN-on-SiC TBR不明显大于GaN-on-SiC范围时,才比碳化硅上的gan (SIC)器件提供热性能的改善。当垂直电导率很高时,基材各向异性导致的横向电导率降低对基材热阻的影响也较小,但基材内扩散的减少对冷板温升的影响较大。最后,对于任何程度的各向异性,厚度小于150μm的衬底会显著增加冷板温升,因为它们限制了热量的传播,并对下游组件施加了更高的热流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GaN HEMT Junction Temperature Dependence on Diamond Substrate Anisotropy and Thermal Boundary Resistance
A thermal model of Gallium Nitride High Electron Mobility Transistors (GaN HEMTs) examines the impact of diamond substrate parameters on device thermal performance. These parameters include substrate thickness, GaN-substrate thermal boundary resistance (TBR), and a simplified anisotropic substrate thermal conductivity. Diamond substrates appear to only provide thermal improvement over GaN-on-Silicon Carbide (SIC) devices when the corresponding GaN-on-diamond TBR is not substantially larger than the GaN-on-SiC range, independent of the degree of substrate anisotropy. The reduced lateral conductivity due to substrate anisotropy also proves to be of less significance to substrate thermal resistance when vertical conductivity is very high, but decreased spreading in the substrate can significantly impact cold plate temperature rise. Finally, for any degree of anisotropy, substrates thinner than 150μm are shown to significantly increase cold plate temperature rise as they restrict heat spreading and impose higher heat fluxes to downstream components.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信