非嵌套广义样例的进化剪枝

D. Zaharie, Lavinia Perian, V. Negru, Flavia Zamfirache
{"title":"非嵌套广义样例的进化剪枝","authors":"D. Zaharie, Lavinia Perian, V. Negru, Flavia Zamfirache","doi":"10.1109/SACI.2011.5872973","DOIUrl":null,"url":null,"abstract":"This paper investigates the ability of an evolutionary pruning mechanism to improve the predictive accuracy of a classifier based on non-nested generalized exemplars. Two pruning algorithms are proposed: one which selects the most representative generalized exemplars and the other one which simultaneously selects both relevant exemplars and relevant attributes. Experimental studies conducted for a set of twenty-one datasets illustrated that both algorithms induce a significant improvement on the classification ability of the selected set of non-nested generalized exemplars.","PeriodicalId":334381,"journal":{"name":"2011 6th IEEE International Symposium on Applied Computational Intelligence and Informatics (SACI)","volume":"121 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Evolutionary pruning of non-nested generalized exemplars\",\"authors\":\"D. Zaharie, Lavinia Perian, V. Negru, Flavia Zamfirache\",\"doi\":\"10.1109/SACI.2011.5872973\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the ability of an evolutionary pruning mechanism to improve the predictive accuracy of a classifier based on non-nested generalized exemplars. Two pruning algorithms are proposed: one which selects the most representative generalized exemplars and the other one which simultaneously selects both relevant exemplars and relevant attributes. Experimental studies conducted for a set of twenty-one datasets illustrated that both algorithms induce a significant improvement on the classification ability of the selected set of non-nested generalized exemplars.\",\"PeriodicalId\":334381,\"journal\":{\"name\":\"2011 6th IEEE International Symposium on Applied Computational Intelligence and Informatics (SACI)\",\"volume\":\"121 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 6th IEEE International Symposium on Applied Computational Intelligence and Informatics (SACI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SACI.2011.5872973\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 6th IEEE International Symposium on Applied Computational Intelligence and Informatics (SACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SACI.2011.5872973","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文研究了一种进化剪枝机制提高基于非嵌套广义样例的分类器预测精度的能力。提出了两种剪枝算法:一种是选取最具代表性的广义样例,另一种是同时选取相关样例和相关属性。对21个数据集进行的实验研究表明,这两种算法都显著提高了所选非嵌套广义样例集的分类能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evolutionary pruning of non-nested generalized exemplars
This paper investigates the ability of an evolutionary pruning mechanism to improve the predictive accuracy of a classifier based on non-nested generalized exemplars. Two pruning algorithms are proposed: one which selects the most representative generalized exemplars and the other one which simultaneously selects both relevant exemplars and relevant attributes. Experimental studies conducted for a set of twenty-one datasets illustrated that both algorithms induce a significant improvement on the classification ability of the selected set of non-nested generalized exemplars.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信