SiC功率mosfet的失效机理

A. Fayyaz, A. Castellazzi, G. Romano, M. Riccio, A. Irace, J. Urresti, N. Wright
{"title":"SiC功率mosfet的失效机理","authors":"A. Fayyaz, A. Castellazzi, G. Romano, M. Riccio, A. Irace, J. Urresti, N. Wright","doi":"10.1109/WIPDA.2016.7799921","DOIUrl":null,"url":null,"abstract":"This paper investigates the failure mechanism of SiC power MOSFETs during avalanche breakdown under unclamped inductive switching (UIS) test regime. Switches deployed within motor drive applications could experience undesired avalanche breakdown events. Therefore, avalanche ruggedness is an important feature of power devices enabling snubber-less converter design and is also a desired feature in certain applications such as automotive. It is essential to thoroughly characterize SiC power MOSFETs for better understanding of their robustness and more importantly of their corresponding underling physical mechanisms responsible for failure in order to inform device design and technology evolution. Experimental results during UIS at failure and 2D TCAD simulation results are presented in this study.","PeriodicalId":431347,"journal":{"name":"2016 IEEE 4th Workshop on Wide Bandgap Power Devices and Applications (WiPDA)","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":"{\"title\":\"UIS failure mechanism of SiC power MOSFETs\",\"authors\":\"A. Fayyaz, A. Castellazzi, G. Romano, M. Riccio, A. Irace, J. Urresti, N. Wright\",\"doi\":\"10.1109/WIPDA.2016.7799921\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the failure mechanism of SiC power MOSFETs during avalanche breakdown under unclamped inductive switching (UIS) test regime. Switches deployed within motor drive applications could experience undesired avalanche breakdown events. Therefore, avalanche ruggedness is an important feature of power devices enabling snubber-less converter design and is also a desired feature in certain applications such as automotive. It is essential to thoroughly characterize SiC power MOSFETs for better understanding of their robustness and more importantly of their corresponding underling physical mechanisms responsible for failure in order to inform device design and technology evolution. Experimental results during UIS at failure and 2D TCAD simulation results are presented in this study.\",\"PeriodicalId\":431347,\"journal\":{\"name\":\"2016 IEEE 4th Workshop on Wide Bandgap Power Devices and Applications (WiPDA)\",\"volume\":\"96 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"38\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 4th Workshop on Wide Bandgap Power Devices and Applications (WiPDA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WIPDA.2016.7799921\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 4th Workshop on Wide Bandgap Power Devices and Applications (WiPDA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIPDA.2016.7799921","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

摘要

本文研究了在非箝位电感开关(UIS)测试条件下SiC功率mosfet雪崩击穿的失效机理。在电机驱动应用中部署的开关可能会遇到意想不到的雪崩击穿事件。因此,雪崩坚固性是实现无缓冲器转换器设计的功率器件的重要特征,也是某些应用(如汽车)所需的特征。为了更好地了解SiC功率mosfet的稳健性,更重要的是了解导致故障的相应底层物理机制,以便为器件设计和技术发展提供信息,彻底表征SiC功率mosfet至关重要。给出了失效状态下UIS的实验结果和二维TCAD仿真结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
UIS failure mechanism of SiC power MOSFETs
This paper investigates the failure mechanism of SiC power MOSFETs during avalanche breakdown under unclamped inductive switching (UIS) test regime. Switches deployed within motor drive applications could experience undesired avalanche breakdown events. Therefore, avalanche ruggedness is an important feature of power devices enabling snubber-less converter design and is also a desired feature in certain applications such as automotive. It is essential to thoroughly characterize SiC power MOSFETs for better understanding of their robustness and more importantly of their corresponding underling physical mechanisms responsible for failure in order to inform device design and technology evolution. Experimental results during UIS at failure and 2D TCAD simulation results are presented in this study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信