{"title":"利用遗传算法优化模糊控制器参数,对倒立摆进行控制","authors":"Khayreddine Saidi, Mourad Allad","doi":"10.1109/CEIT.2015.7233020","DOIUrl":null,"url":null,"abstract":"In this paper, hybridization between two artificial intelligence techniques is proposed for the control of inverted pendulum. The controller combines a genetic algorithms technique optimization with fuzzy logic controller. We employ this procedure in a genetic algorithm (GA) to search for the optimal parameters (gains) of fuzzy logic controller. Numerical simulations verify the validity of the proposed control strategy.","PeriodicalId":281793,"journal":{"name":"2015 3rd International Conference on Control, Engineering & Information Technology (CEIT)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Fuzzy controller parameters optimization by using genetic algorithm for the control of inverted pendulum\",\"authors\":\"Khayreddine Saidi, Mourad Allad\",\"doi\":\"10.1109/CEIT.2015.7233020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, hybridization between two artificial intelligence techniques is proposed for the control of inverted pendulum. The controller combines a genetic algorithms technique optimization with fuzzy logic controller. We employ this procedure in a genetic algorithm (GA) to search for the optimal parameters (gains) of fuzzy logic controller. Numerical simulations verify the validity of the proposed control strategy.\",\"PeriodicalId\":281793,\"journal\":{\"name\":\"2015 3rd International Conference on Control, Engineering & Information Technology (CEIT)\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 3rd International Conference on Control, Engineering & Information Technology (CEIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEIT.2015.7233020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 3rd International Conference on Control, Engineering & Information Technology (CEIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEIT.2015.7233020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fuzzy controller parameters optimization by using genetic algorithm for the control of inverted pendulum
In this paper, hybridization between two artificial intelligence techniques is proposed for the control of inverted pendulum. The controller combines a genetic algorithms technique optimization with fuzzy logic controller. We employ this procedure in a genetic algorithm (GA) to search for the optimal parameters (gains) of fuzzy logic controller. Numerical simulations verify the validity of the proposed control strategy.