Gonçalo Collares Pereira, Lars Svensson, P. Lima, J. Mårtensson
{"title":"过度驱动自动驾驶汽车横向模型预测控制","authors":"Gonçalo Collares Pereira, Lars Svensson, P. Lima, J. Mårtensson","doi":"10.1109/IVS.2017.7995737","DOIUrl":null,"url":null,"abstract":"In this paper, a lateral controller is proposed for an over-actuated vehicle. The controller is formulated as a linear time-varying model predictive controller. The aim of the controller is to track a desired path smoothly, by making use of the vehicle crabbing capability (sideways movement) and minimizing the magnitude of curvature used. To do this, not only the error to the path is minimized, but also the error to the desired orientation and the control signals requests. The controller uses an extended kinematic model that takes into consideration the vehicle crabbing capability and is able to track not only kinematically feasible paths, but also plan and track over non-feasible discontinuous paths. Ackermann steering geometry is used to transform the control requests, curvature, and crabbing angle, to wheel angles. Finally, the controller performance is evaluated first by simulation and, after, by means of experimental tests on an over-actuated autonomous research vehicle.","PeriodicalId":143367,"journal":{"name":"2017 IEEE Intelligent Vehicles Symposium (IV)","volume":"25 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Lateral Model Predictive Control for Over-Actuated Autonomous Vehicle\",\"authors\":\"Gonçalo Collares Pereira, Lars Svensson, P. Lima, J. Mårtensson\",\"doi\":\"10.1109/IVS.2017.7995737\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a lateral controller is proposed for an over-actuated vehicle. The controller is formulated as a linear time-varying model predictive controller. The aim of the controller is to track a desired path smoothly, by making use of the vehicle crabbing capability (sideways movement) and minimizing the magnitude of curvature used. To do this, not only the error to the path is minimized, but also the error to the desired orientation and the control signals requests. The controller uses an extended kinematic model that takes into consideration the vehicle crabbing capability and is able to track not only kinematically feasible paths, but also plan and track over non-feasible discontinuous paths. Ackermann steering geometry is used to transform the control requests, curvature, and crabbing angle, to wheel angles. Finally, the controller performance is evaluated first by simulation and, after, by means of experimental tests on an over-actuated autonomous research vehicle.\",\"PeriodicalId\":143367,\"journal\":{\"name\":\"2017 IEEE Intelligent Vehicles Symposium (IV)\",\"volume\":\"25 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Intelligent Vehicles Symposium (IV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVS.2017.7995737\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2017.7995737","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Lateral Model Predictive Control for Over-Actuated Autonomous Vehicle
In this paper, a lateral controller is proposed for an over-actuated vehicle. The controller is formulated as a linear time-varying model predictive controller. The aim of the controller is to track a desired path smoothly, by making use of the vehicle crabbing capability (sideways movement) and minimizing the magnitude of curvature used. To do this, not only the error to the path is minimized, but also the error to the desired orientation and the control signals requests. The controller uses an extended kinematic model that takes into consideration the vehicle crabbing capability and is able to track not only kinematically feasible paths, but also plan and track over non-feasible discontinuous paths. Ackermann steering geometry is used to transform the control requests, curvature, and crabbing angle, to wheel angles. Finally, the controller performance is evaluated first by simulation and, after, by means of experimental tests on an over-actuated autonomous research vehicle.