电动汽车充电调度模型预测控制研究

César Díaz, A. Mazza, F. Ruiz, D. Patiño, G. Chicco
{"title":"电动汽车充电调度模型预测控制研究","authors":"César Díaz, A. Mazza, F. Ruiz, D. Patiño, G. Chicco","doi":"10.1109/UPEC.2018.8542050","DOIUrl":null,"url":null,"abstract":"This paper illustrates the principles of Model Predictive Control (MPC) applied to control the dispatch of power to Electric Vehicle (EV) chargers in a charging station. The MPC strategy aims to determine a control signal by following a day-ahead scheduling and minimizing an economic objective function. The strategy works in closed-loop architecture. The MPC calculates an optimal charging sequence at each time step of the prediction horizon, but it applies the control signal only for the first step of the sequence, following a receding horizon strategy. The results of the MPC strategy lead to track a dayahead scheduling by considering uncertainties on the EV arrival state of charge, and generation disturbances. The MPC strategy outcomes are compared with an open-loop strategy, with the target to apply the scheduled power.","PeriodicalId":340842,"journal":{"name":"2018 53rd International Universities Power Engineering Conference (UPEC)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Understanding Model Predictive Control for Electric Vehicle Charging Dispatch\",\"authors\":\"César Díaz, A. Mazza, F. Ruiz, D. Patiño, G. Chicco\",\"doi\":\"10.1109/UPEC.2018.8542050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper illustrates the principles of Model Predictive Control (MPC) applied to control the dispatch of power to Electric Vehicle (EV) chargers in a charging station. The MPC strategy aims to determine a control signal by following a day-ahead scheduling and minimizing an economic objective function. The strategy works in closed-loop architecture. The MPC calculates an optimal charging sequence at each time step of the prediction horizon, but it applies the control signal only for the first step of the sequence, following a receding horizon strategy. The results of the MPC strategy lead to track a dayahead scheduling by considering uncertainties on the EV arrival state of charge, and generation disturbances. The MPC strategy outcomes are compared with an open-loop strategy, with the target to apply the scheduled power.\",\"PeriodicalId\":340842,\"journal\":{\"name\":\"2018 53rd International Universities Power Engineering Conference (UPEC)\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 53rd International Universities Power Engineering Conference (UPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UPEC.2018.8542050\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 53rd International Universities Power Engineering Conference (UPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UPEC.2018.8542050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文阐述了模型预测控制(MPC)在充电站电动汽车充电器电力调度控制中的应用原理。MPC策略旨在通过遵循提前一天的调度和最小化经济目标函数来确定控制信号。该策略适用于闭环体系结构。MPC在预测视界的每个时间步长上计算出一个最优充电序列,但它只对序列的第一步应用控制信号,并遵循后退视界策略。该策略考虑了电动汽车到达充电状态的不确定性和发电扰动等因素,实现了一天前的调度跟踪。将MPC策略的结果与开环策略进行了比较,目标是应用计划功率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Understanding Model Predictive Control for Electric Vehicle Charging Dispatch
This paper illustrates the principles of Model Predictive Control (MPC) applied to control the dispatch of power to Electric Vehicle (EV) chargers in a charging station. The MPC strategy aims to determine a control signal by following a day-ahead scheduling and minimizing an economic objective function. The strategy works in closed-loop architecture. The MPC calculates an optimal charging sequence at each time step of the prediction horizon, but it applies the control signal only for the first step of the sequence, following a receding horizon strategy. The results of the MPC strategy lead to track a dayahead scheduling by considering uncertainties on the EV arrival state of charge, and generation disturbances. The MPC strategy outcomes are compared with an open-loop strategy, with the target to apply the scheduled power.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信