统计变量感知方法的研究

Hao Cai, Kaikai Liu, Lirida Alves de Barros Naviner
{"title":"统计变量感知方法的研究","authors":"Hao Cai, Kaikai Liu, Lirida Alves de Barros Naviner","doi":"10.1109/RFIT.2014.6933246","DOIUrl":null,"url":null,"abstract":"Conventionally circuit performance variability is analyzed with Monte-Carlo simulation and design corner analysis. On the other hand, statistical methods such as design of experiments (DoEs), response surface modeling (RSM) and compact modeling (CM) can achieve a better trade-off between simulation efficiency and accuracy. This paper investigates these variability-aware analysis methodologies. Based on industry standard BSIM4 compact model, selected physical parameters are applied to DoE-RSM and CM methods. Methodologies are validated with both analog (op-amp) and digital circuits (flip-flop) at 65 nm node. A 3X speed up is achieved with DoE-RSM. A proper selection of CM parameters is critical to model accuracy.","PeriodicalId":281858,"journal":{"name":"2014 IEEE International Symposium on Radio-Frequency Integration Technology","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A study of statistical variability-aware methods\",\"authors\":\"Hao Cai, Kaikai Liu, Lirida Alves de Barros Naviner\",\"doi\":\"10.1109/RFIT.2014.6933246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conventionally circuit performance variability is analyzed with Monte-Carlo simulation and design corner analysis. On the other hand, statistical methods such as design of experiments (DoEs), response surface modeling (RSM) and compact modeling (CM) can achieve a better trade-off between simulation efficiency and accuracy. This paper investigates these variability-aware analysis methodologies. Based on industry standard BSIM4 compact model, selected physical parameters are applied to DoE-RSM and CM methods. Methodologies are validated with both analog (op-amp) and digital circuits (flip-flop) at 65 nm node. A 3X speed up is achieved with DoE-RSM. A proper selection of CM parameters is critical to model accuracy.\",\"PeriodicalId\":281858,\"journal\":{\"name\":\"2014 IEEE International Symposium on Radio-Frequency Integration Technology\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Symposium on Radio-Frequency Integration Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RFIT.2014.6933246\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Symposium on Radio-Frequency Integration Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RFIT.2014.6933246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

采用蒙特卡罗仿真和设计角分析方法分析了传统电路的性能变异性。另一方面,实验设计(do)、响应面建模(RSM)和紧凑建模(CM)等统计方法可以在仿真效率和精度之间取得更好的平衡。本文对这些变量感知分析方法进行了研究。在工业标准BSIM4压缩模型的基础上,将选定的物理参数应用于DoE-RSM和CM方法。方法在65nm节点上通过模拟(运算放大器)和数字电路(触发器)进行验证。DoE-RSM实现了3倍的速度提升。正确选择CM参数对模型精度至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A study of statistical variability-aware methods
Conventionally circuit performance variability is analyzed with Monte-Carlo simulation and design corner analysis. On the other hand, statistical methods such as design of experiments (DoEs), response surface modeling (RSM) and compact modeling (CM) can achieve a better trade-off between simulation efficiency and accuracy. This paper investigates these variability-aware analysis methodologies. Based on industry standard BSIM4 compact model, selected physical parameters are applied to DoE-RSM and CM methods. Methodologies are validated with both analog (op-amp) and digital circuits (flip-flop) at 65 nm node. A 3X speed up is achieved with DoE-RSM. A proper selection of CM parameters is critical to model accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信