正半定矩阵上M4(C)到M5(C)的完全正映射

Winda C. Akatch, N. B. Okelo, Omolo N. Ong’ati
{"title":"正半定矩阵上M4(C)到M5(C)的完全正映射","authors":"Winda C. Akatch, N. B. Okelo, Omolo N. Ong’ati","doi":"10.48185/jmam.v3i1.441","DOIUrl":null,"url":null,"abstract":"Positive maps are essential in the description of quantum systems. However, characterization of the structure of the set of all positive maps is a challenge in mathematics and mathematical physics. We construct a linear positive map from M4 to M5 and state the conditions under which they are positive and completely positive (copositivity of positive).","PeriodicalId":393347,"journal":{"name":"Journal of Mathematical Analysis and Modeling","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Completely positive map from M4(C) to M5(C) on positive semidefinite Matrices\",\"authors\":\"Winda C. Akatch, N. B. Okelo, Omolo N. Ong’ati\",\"doi\":\"10.48185/jmam.v3i1.441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Positive maps are essential in the description of quantum systems. However, characterization of the structure of the set of all positive maps is a challenge in mathematics and mathematical physics. We construct a linear positive map from M4 to M5 and state the conditions under which they are positive and completely positive (copositivity of positive).\",\"PeriodicalId\":393347,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Modeling\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48185/jmam.v3i1.441\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48185/jmam.v3i1.441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

正映射在量子系统的描述中是必不可少的。然而,描述所有正映射集合的结构是数学和数学物理中的一个挑战。我们构造了一个从M4到M5的线性正映射,并给出了它们是正的和完全正的条件(正的可合性)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Completely positive map from M4(C) to M5(C) on positive semidefinite Matrices
Positive maps are essential in the description of quantum systems. However, characterization of the structure of the set of all positive maps is a challenge in mathematics and mathematical physics. We construct a linear positive map from M4 to M5 and state the conditions under which they are positive and completely positive (copositivity of positive).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信