基于纠错输出码的RGB-NIR图像语义分割

A. Radoi
{"title":"基于纠错输出码的RGB-NIR图像语义分割","authors":"A. Radoi","doi":"10.1109/iccomm.2018.8484811","DOIUrl":null,"url":null,"abstract":"Scene understanding is strictly linked to image semantic segmentation, which is the process of associating each pixel of an image with a label, such as sky, clouds, road, building. This paper proposes a new semantic segmentation framework, in which Error-Correcting Output Codes (ECOC) are used to decompose the multiway classification problem into multiple binary classification subtasks. The binary output results are then converted into final class labels following a decoding table established at the beginning of the classification procedure. As part of the recognition framework, color descriptors and high-level visual features are extracted to represent the appearance of the patch surrounding each pixel of interest. The proposed method is validated on an image database containing RGB and Near-Infrared (NIR) imaaes.","PeriodicalId":158890,"journal":{"name":"2018 International Conference on Communications (COMM)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semantic Segmentation of RGB-NIR Images with Error-Correcting Output Codes\",\"authors\":\"A. Radoi\",\"doi\":\"10.1109/iccomm.2018.8484811\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Scene understanding is strictly linked to image semantic segmentation, which is the process of associating each pixel of an image with a label, such as sky, clouds, road, building. This paper proposes a new semantic segmentation framework, in which Error-Correcting Output Codes (ECOC) are used to decompose the multiway classification problem into multiple binary classification subtasks. The binary output results are then converted into final class labels following a decoding table established at the beginning of the classification procedure. As part of the recognition framework, color descriptors and high-level visual features are extracted to represent the appearance of the patch surrounding each pixel of interest. The proposed method is validated on an image database containing RGB and Near-Infrared (NIR) imaaes.\",\"PeriodicalId\":158890,\"journal\":{\"name\":\"2018 International Conference on Communications (COMM)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Communications (COMM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iccomm.2018.8484811\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Communications (COMM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iccomm.2018.8484811","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

场景理解与图像语义分割密切相关,语义分割是将图像的每个像素与标签(如天空、云、道路、建筑物)关联起来的过程。本文提出了一种新的语义分割框架,该框架使用纠错输出码(ECOC)将多路分类问题分解为多个二值分类子任务。然后,根据在分类过程开始时建立的解码表,将二进制输出结果转换为最终的类标签。作为识别框架的一部分,提取颜色描述符和高级视觉特征来表示每个感兴趣像素周围的补丁的外观。在包含RGB和近红外(NIR)图像的图像数据库上验证了该方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semantic Segmentation of RGB-NIR Images with Error-Correcting Output Codes
Scene understanding is strictly linked to image semantic segmentation, which is the process of associating each pixel of an image with a label, such as sky, clouds, road, building. This paper proposes a new semantic segmentation framework, in which Error-Correcting Output Codes (ECOC) are used to decompose the multiway classification problem into multiple binary classification subtasks. The binary output results are then converted into final class labels following a decoding table established at the beginning of the classification procedure. As part of the recognition framework, color descriptors and high-level visual features are extracted to represent the appearance of the patch surrounding each pixel of interest. The proposed method is validated on an image database containing RGB and Near-Infrared (NIR) imaaes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信