语境与情感分析的知识表示

Ireti Fakinlede, Vivekanandan Kumar, Dunwei Wen
{"title":"语境与情感分析的知识表示","authors":"Ireti Fakinlede, Vivekanandan Kumar, Dunwei Wen","doi":"10.1109/ICALT.2013.158","DOIUrl":null,"url":null,"abstract":"This paper presents a knowledge representation framework for natural language understanding. Here we propose an automated knowledge acquisition mechanism that mirrors information extraction in human-human interaction. This framework utilizes knowledge based automatic role labeling and automatic concept learning together with a conceptual structure that captures intent and context. The resulting framework is to be used to improve the agent's ability to engage in social interaction with humans.","PeriodicalId":301310,"journal":{"name":"2013 IEEE 13th International Conference on Advanced Learning Technologies","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Knowledge Representation for Context and Sentiment Analysis\",\"authors\":\"Ireti Fakinlede, Vivekanandan Kumar, Dunwei Wen\",\"doi\":\"10.1109/ICALT.2013.158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a knowledge representation framework for natural language understanding. Here we propose an automated knowledge acquisition mechanism that mirrors information extraction in human-human interaction. This framework utilizes knowledge based automatic role labeling and automatic concept learning together with a conceptual structure that captures intent and context. The resulting framework is to be used to improve the agent's ability to engage in social interaction with humans.\",\"PeriodicalId\":301310,\"journal\":{\"name\":\"2013 IEEE 13th International Conference on Advanced Learning Technologies\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 13th International Conference on Advanced Learning Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICALT.2013.158\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 13th International Conference on Advanced Learning Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICALT.2013.158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种用于自然语言理解的知识表示框架。本文提出了一种反映人机交互中信息提取的自动化知识获取机制。该框架利用基于知识的自动角色标记和自动概念学习,以及捕获意图和上下文的概念结构。由此产生的框架将用于提高智能体与人类进行社会互动的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Knowledge Representation for Context and Sentiment Analysis
This paper presents a knowledge representation framework for natural language understanding. Here we propose an automated knowledge acquisition mechanism that mirrors information extraction in human-human interaction. This framework utilizes knowledge based automatic role labeling and automatic concept learning together with a conceptual structure that captures intent and context. The resulting framework is to be used to improve the agent's ability to engage in social interaction with humans.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信