{"title":"语境与情感分析的知识表示","authors":"Ireti Fakinlede, Vivekanandan Kumar, Dunwei Wen","doi":"10.1109/ICALT.2013.158","DOIUrl":null,"url":null,"abstract":"This paper presents a knowledge representation framework for natural language understanding. Here we propose an automated knowledge acquisition mechanism that mirrors information extraction in human-human interaction. This framework utilizes knowledge based automatic role labeling and automatic concept learning together with a conceptual structure that captures intent and context. The resulting framework is to be used to improve the agent's ability to engage in social interaction with humans.","PeriodicalId":301310,"journal":{"name":"2013 IEEE 13th International Conference on Advanced Learning Technologies","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Knowledge Representation for Context and Sentiment Analysis\",\"authors\":\"Ireti Fakinlede, Vivekanandan Kumar, Dunwei Wen\",\"doi\":\"10.1109/ICALT.2013.158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a knowledge representation framework for natural language understanding. Here we propose an automated knowledge acquisition mechanism that mirrors information extraction in human-human interaction. This framework utilizes knowledge based automatic role labeling and automatic concept learning together with a conceptual structure that captures intent and context. The resulting framework is to be used to improve the agent's ability to engage in social interaction with humans.\",\"PeriodicalId\":301310,\"journal\":{\"name\":\"2013 IEEE 13th International Conference on Advanced Learning Technologies\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 13th International Conference on Advanced Learning Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICALT.2013.158\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 13th International Conference on Advanced Learning Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICALT.2013.158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Knowledge Representation for Context and Sentiment Analysis
This paper presents a knowledge representation framework for natural language understanding. Here we propose an automated knowledge acquisition mechanism that mirrors information extraction in human-human interaction. This framework utilizes knowledge based automatic role labeling and automatic concept learning together with a conceptual structure that captures intent and context. The resulting framework is to be used to improve the agent's ability to engage in social interaction with humans.