{"title":"洛伦茨改装系统的分叉","authors":"Fadilah Ilahi, A. Lestari","doi":"10.15575/KUBIK.V4I1.5677","DOIUrl":null,"url":null,"abstract":"Penelitian ini membahas sistem Lorenz modifikasi yang menggambarkan pergerakan angin di atmosfer yang mengalami turbulensi karena adanya perubahan temperatur yang dipengaruhi oleh intensitas gerak fluida, temperatur horizontal serta temperatur vertikal. Sistem ini memiliki tiga parameter real, yaitu parameter yang menentukan distribusi temperatur, nilai yang bergantung dengan keadaan geometri suatu fluida serta nilai perbedaan temperatur antara bagian atas dan bagian bawah lapisan. Analisis dinamik pada sistem ini menentukan titik ekuilibrium, nilai eigen serta menentukan kestabilan dari setiap titik ekuilibrium. Sistem ini memiliki dua titik ekuilibrium. Berdasarkan analisis yang telah dilakukan diperoleh bahwa titik ekuilibrium yang pertama dinyatakan tidak stabil dan titik ekulibrium yang kedua stabil bersyarat. Untuk mengetahui bifurkasi dari sistem ini, diambil 27 kondisi dengan parameter yang berbeda-beda. Dengan mengambil 27 kondisi ini dapat dilihat perubahan kestabilannya. Karena adanya perubahan kestabilan, maka sistem ini termasuk bifurkasi transcritical. Limit cycle yang terbentuk adalah limit cycle stabil karena bagian luar dan dalam limit cycle mendekati limit cycle.","PeriodicalId":300313,"journal":{"name":"Kubik: Jurnal Publikasi Ilmiah Matematika","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bifurkasi pada Sistem Lorenz Modifikasi\",\"authors\":\"Fadilah Ilahi, A. Lestari\",\"doi\":\"10.15575/KUBIK.V4I1.5677\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Penelitian ini membahas sistem Lorenz modifikasi yang menggambarkan pergerakan angin di atmosfer yang mengalami turbulensi karena adanya perubahan temperatur yang dipengaruhi oleh intensitas gerak fluida, temperatur horizontal serta temperatur vertikal. Sistem ini memiliki tiga parameter real, yaitu parameter yang menentukan distribusi temperatur, nilai yang bergantung dengan keadaan geometri suatu fluida serta nilai perbedaan temperatur antara bagian atas dan bagian bawah lapisan. Analisis dinamik pada sistem ini menentukan titik ekuilibrium, nilai eigen serta menentukan kestabilan dari setiap titik ekuilibrium. Sistem ini memiliki dua titik ekuilibrium. Berdasarkan analisis yang telah dilakukan diperoleh bahwa titik ekuilibrium yang pertama dinyatakan tidak stabil dan titik ekulibrium yang kedua stabil bersyarat. Untuk mengetahui bifurkasi dari sistem ini, diambil 27 kondisi dengan parameter yang berbeda-beda. Dengan mengambil 27 kondisi ini dapat dilihat perubahan kestabilannya. Karena adanya perubahan kestabilan, maka sistem ini termasuk bifurkasi transcritical. Limit cycle yang terbentuk adalah limit cycle stabil karena bagian luar dan dalam limit cycle mendekati limit cycle.\",\"PeriodicalId\":300313,\"journal\":{\"name\":\"Kubik: Jurnal Publikasi Ilmiah Matematika\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kubik: Jurnal Publikasi Ilmiah Matematika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15575/KUBIK.V4I1.5677\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kubik: Jurnal Publikasi Ilmiah Matematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15575/KUBIK.V4I1.5677","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Penelitian ini membahas sistem Lorenz modifikasi yang menggambarkan pergerakan angin di atmosfer yang mengalami turbulensi karena adanya perubahan temperatur yang dipengaruhi oleh intensitas gerak fluida, temperatur horizontal serta temperatur vertikal. Sistem ini memiliki tiga parameter real, yaitu parameter yang menentukan distribusi temperatur, nilai yang bergantung dengan keadaan geometri suatu fluida serta nilai perbedaan temperatur antara bagian atas dan bagian bawah lapisan. Analisis dinamik pada sistem ini menentukan titik ekuilibrium, nilai eigen serta menentukan kestabilan dari setiap titik ekuilibrium. Sistem ini memiliki dua titik ekuilibrium. Berdasarkan analisis yang telah dilakukan diperoleh bahwa titik ekuilibrium yang pertama dinyatakan tidak stabil dan titik ekulibrium yang kedua stabil bersyarat. Untuk mengetahui bifurkasi dari sistem ini, diambil 27 kondisi dengan parameter yang berbeda-beda. Dengan mengambil 27 kondisi ini dapat dilihat perubahan kestabilannya. Karena adanya perubahan kestabilan, maka sistem ini termasuk bifurkasi transcritical. Limit cycle yang terbentuk adalah limit cycle stabil karena bagian luar dan dalam limit cycle mendekati limit cycle.