基于主成分分析算法的三维人脸识别方法

Xue Yuan, Jianming Lu, T. Yahagi
{"title":"基于主成分分析算法的三维人脸识别方法","authors":"Xue Yuan, Jianming Lu, T. Yahagi","doi":"10.1109/ISCAS.2005.1465311","DOIUrl":null,"url":null,"abstract":"We present a method of face recognition using 3D images. We first compensate the poses of 3D original facial images using geometrical measurement and extract 2D texture data and the 3D shape data from 3D facial images for recognition. Based on a principal component analysis (PCA) algorithm, all the 2D texture images and the 3D shape images are normalized to 32/spl times/32 pixels. In the second step, we propose a method for face recognition based on fuzzy clustering and parallel neural networks. Experimental results for 70 persons with different poses demonstrate the efficiency of our algorithm.","PeriodicalId":191200,"journal":{"name":"2005 IEEE International Symposium on Circuits and Systems","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"A method of 3D face recognition based on principal component analysis algorithm\",\"authors\":\"Xue Yuan, Jianming Lu, T. Yahagi\",\"doi\":\"10.1109/ISCAS.2005.1465311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a method of face recognition using 3D images. We first compensate the poses of 3D original facial images using geometrical measurement and extract 2D texture data and the 3D shape data from 3D facial images for recognition. Based on a principal component analysis (PCA) algorithm, all the 2D texture images and the 3D shape images are normalized to 32/spl times/32 pixels. In the second step, we propose a method for face recognition based on fuzzy clustering and parallel neural networks. Experimental results for 70 persons with different poses demonstrate the efficiency of our algorithm.\",\"PeriodicalId\":191200,\"journal\":{\"name\":\"2005 IEEE International Symposium on Circuits and Systems\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2005 IEEE International Symposium on Circuits and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCAS.2005.1465311\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE International Symposium on Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAS.2005.1465311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

提出了一种基于三维图像的人脸识别方法。首先利用几何测量对三维原始人脸图像进行姿态补偿,然后从三维人脸图像中提取二维纹理数据和三维形状数据进行识别。基于主成分分析(PCA)算法,将所有二维纹理图像和三维形状图像归一化为32/spl次/32像素。第二步,提出了一种基于模糊聚类和并行神经网络的人脸识别方法。70人不同姿态的实验结果证明了算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A method of 3D face recognition based on principal component analysis algorithm
We present a method of face recognition using 3D images. We first compensate the poses of 3D original facial images using geometrical measurement and extract 2D texture data and the 3D shape data from 3D facial images for recognition. Based on a principal component analysis (PCA) algorithm, all the 2D texture images and the 3D shape images are normalized to 32/spl times/32 pixels. In the second step, we propose a method for face recognition based on fuzzy clustering and parallel neural networks. Experimental results for 70 persons with different poses demonstrate the efficiency of our algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信