动态核医学成像中摄取模式评价的时间活动曲线聚类

Vera Miler-Jerković, M. Janković, A. K. Markovic
{"title":"动态核医学成像中摄取模式评价的时间活动曲线聚类","authors":"Vera Miler-Jerković, M. Janković, A. K. Markovic","doi":"10.1109/NEUREL.2014.7011489","DOIUrl":null,"url":null,"abstract":"Nuclear medicine instrumentation visualize the radiopharmaceutical uptake inside the body allowing the interpretation of physiological processes. In dynamic nuclear medicine imaging, time-dependent image sequences are recorded. The changes of radiopharmaceutical uptake over time (so calles time activity curves, TACs) can be analyzed in order to find abnormal patterns corresponding to either structural or functional disorders. Hierarchical Cluster Analysis (HCA) is a powerful statistical tool for classification. We applied HCA on TACs to find clusters of similar TAC patterns. Optimal number of clusters is determined by Hubert's rule. We used Principal Component Analysis (PCA) on TAC clusters to find a representative TAC that presents the uptake pattern in the region of each cluster. The application of algorithm is illustrated in the patient with the histopatologically proven parathyroid hyperplasia, but the developed tool is useful for finding the appropriate classification method of TAC patterns in all types of dynamic nuclear medicine studies.","PeriodicalId":402208,"journal":{"name":"12th Symposium on Neural Network Applications in Electrical Engineering (NEUREL)","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Clustering of time activity curves for uptake pattern assessment in dynamic nuclear medicine imaging\",\"authors\":\"Vera Miler-Jerković, M. Janković, A. K. Markovic\",\"doi\":\"10.1109/NEUREL.2014.7011489\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nuclear medicine instrumentation visualize the radiopharmaceutical uptake inside the body allowing the interpretation of physiological processes. In dynamic nuclear medicine imaging, time-dependent image sequences are recorded. The changes of radiopharmaceutical uptake over time (so calles time activity curves, TACs) can be analyzed in order to find abnormal patterns corresponding to either structural or functional disorders. Hierarchical Cluster Analysis (HCA) is a powerful statistical tool for classification. We applied HCA on TACs to find clusters of similar TAC patterns. Optimal number of clusters is determined by Hubert's rule. We used Principal Component Analysis (PCA) on TAC clusters to find a representative TAC that presents the uptake pattern in the region of each cluster. The application of algorithm is illustrated in the patient with the histopatologically proven parathyroid hyperplasia, but the developed tool is useful for finding the appropriate classification method of TAC patterns in all types of dynamic nuclear medicine studies.\",\"PeriodicalId\":402208,\"journal\":{\"name\":\"12th Symposium on Neural Network Applications in Electrical Engineering (NEUREL)\",\"volume\":\"91 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"12th Symposium on Neural Network Applications in Electrical Engineering (NEUREL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEUREL.2014.7011489\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"12th Symposium on Neural Network Applications in Electrical Engineering (NEUREL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEUREL.2014.7011489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

核医学仪器可视化体内放射性药物的摄取,从而解释生理过程。在动态核医学成像中,记录随时间变化的图像序列。可以分析放射性药物摄取随时间的变化(称为时间活性曲线,tac),以便发现与结构或功能障碍相对应的异常模式。层次聚类分析(HCA)是一种强大的分类统计工具。我们将HCA应用于TAC以找到相似TAC模式的簇。最优聚类数由休伯特规则确定。我们使用主成分分析(PCA)对TAC集群进行分析,找到一个具有代表性的TAC,该TAC代表了每个集群区域的吸收模式。算法在组织病理学证实的甲状旁腺增生患者中的应用,但开发的工具对于在所有类型的动态核医学研究中寻找适当的TAC模式分类方法是有用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Clustering of time activity curves for uptake pattern assessment in dynamic nuclear medicine imaging
Nuclear medicine instrumentation visualize the radiopharmaceutical uptake inside the body allowing the interpretation of physiological processes. In dynamic nuclear medicine imaging, time-dependent image sequences are recorded. The changes of radiopharmaceutical uptake over time (so calles time activity curves, TACs) can be analyzed in order to find abnormal patterns corresponding to either structural or functional disorders. Hierarchical Cluster Analysis (HCA) is a powerful statistical tool for classification. We applied HCA on TACs to find clusters of similar TAC patterns. Optimal number of clusters is determined by Hubert's rule. We used Principal Component Analysis (PCA) on TAC clusters to find a representative TAC that presents the uptake pattern in the region of each cluster. The application of algorithm is illustrated in the patient with the histopatologically proven parathyroid hyperplasia, but the developed tool is useful for finding the appropriate classification method of TAC patterns in all types of dynamic nuclear medicine studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信