用顶点链码计算欧拉数的一种方法

E. Bribiesca, U. Braumann, Ángel Carrillo-Bermejo, Juan Humberto Sossa Azuela
{"title":"用顶点链码计算欧拉数的一种方法","authors":"E. Bribiesca, U. Braumann, Ángel Carrillo-Bermejo, Juan Humberto Sossa Azuela","doi":"10.1155/2020/5632159","DOIUrl":null,"url":null,"abstract":"We present an approach to compute the number of holes in binary images using the Vertex Chain Code (VCC); the VCC was developed for representing and analyzing 2D shapes composed of cells. Using this code, it is possible to relate the outer to inner vertices of any 2D shape and to find interesting properties. Now, in this paper, we describe more properties of the VCC, such as the computation of the connected regions in a hole, the analysis of complementary chains, the computation of the number of holes in a binary shape or image, the computation of the Euler number, and the detection of convex and concave shapes. Finally, in order to illustrate the capabilities of proposed methods, we present the computation of topological properties of examples of objects of the real world.","PeriodicalId":182719,"journal":{"name":"Comput. Math. Methods Medicine","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Approach to the Computation of the Euler Number by means of the Vertex Chain Code\",\"authors\":\"E. Bribiesca, U. Braumann, Ángel Carrillo-Bermejo, Juan Humberto Sossa Azuela\",\"doi\":\"10.1155/2020/5632159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an approach to compute the number of holes in binary images using the Vertex Chain Code (VCC); the VCC was developed for representing and analyzing 2D shapes composed of cells. Using this code, it is possible to relate the outer to inner vertices of any 2D shape and to find interesting properties. Now, in this paper, we describe more properties of the VCC, such as the computation of the connected regions in a hole, the analysis of complementary chains, the computation of the number of holes in a binary shape or image, the computation of the Euler number, and the detection of convex and concave shapes. Finally, in order to illustrate the capabilities of proposed methods, we present the computation of topological properties of examples of objects of the real world.\",\"PeriodicalId\":182719,\"journal\":{\"name\":\"Comput. Math. Methods Medicine\",\"volume\":\"100 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comput. Math. Methods Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2020/5632159\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comput. Math. Methods Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2020/5632159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种利用顶点链码(Vertex Chain Code, VCC)计算二值图像中孔数的方法;VCC是用来表示和分析由细胞组成的二维形状的。使用此代码,可以将任何2D形状的外部顶点与内部顶点联系起来,并找到有趣的属性。在本文中,我们描述了VCC的更多性质,如孔中连通区域的计算、互补链的分析、二进制形状或图像中孔数的计算、欧拉数的计算以及凸凹形状的检测。最后,为了说明所提出的方法的能力,我们给出了现实世界中对象示例的拓扑属性的计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Approach to the Computation of the Euler Number by means of the Vertex Chain Code
We present an approach to compute the number of holes in binary images using the Vertex Chain Code (VCC); the VCC was developed for representing and analyzing 2D shapes composed of cells. Using this code, it is possible to relate the outer to inner vertices of any 2D shape and to find interesting properties. Now, in this paper, we describe more properties of the VCC, such as the computation of the connected regions in a hole, the analysis of complementary chains, the computation of the number of holes in a binary shape or image, the computation of the Euler number, and the detection of convex and concave shapes. Finally, in order to illustrate the capabilities of proposed methods, we present the computation of topological properties of examples of objects of the real world.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信