基于图神经网络的检测能否减轻硬件缺陷的影响?

Lamprini Mitsiou, Stylianos E. Trevlakis, Argiris Tsiolas, D. J. Vergados, A. Michalas, Alexandros-Apostolos A. Boulogeorgos
{"title":"基于图神经网络的检测能否减轻硬件缺陷的影响?","authors":"Lamprini Mitsiou, Stylianos E. Trevlakis, Argiris Tsiolas, D. J. Vergados, A. Michalas, Alexandros-Apostolos A. Boulogeorgos","doi":"10.1109/BalkanCom58402.2023.10167895","DOIUrl":null,"url":null,"abstract":"Until recently, researchers used machine learning methods to compensate for hardware imperfections at the symbol level, indicating that optimum radio-frequency transceiver performance is possible. Nevertheless, such approaches neglect the error correcting codes used in wireless networks, which inspires machine learning (ML)-approaches that learn and minimise hardware imperfections at the bit level. In the present work, we evaluate a graph neural network (GNN)-based intelligent detector’s in-phase and quadrature imbalance (IQI) mitigation capabilities. We focus on a high-frequency, high-directional wireless system where IQI affects both the transmitter (TX) and the receiver (RX). The TX uses a GNN-based decoder, whilst the RX uses a linear error correcting algorithm. The bit error rate (BER) is computed using appropriate Monte Carlo simulations to quantity performance. Finally, the outcomes are compared to both traditional systems using conventional detectors and wireless systems using belief propagation based detectors. Due to the utilization of graph neural networks, the proposed algorithm is highly scalable with few training parameters and is able to adapt to various code parameters.","PeriodicalId":363999,"journal":{"name":"2023 International Balkan Conference on Communications and Networking (BalkanCom)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Can graph neural network-based detection mitigate the impact of hardware imperfections?\",\"authors\":\"Lamprini Mitsiou, Stylianos E. Trevlakis, Argiris Tsiolas, D. J. Vergados, A. Michalas, Alexandros-Apostolos A. Boulogeorgos\",\"doi\":\"10.1109/BalkanCom58402.2023.10167895\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Until recently, researchers used machine learning methods to compensate for hardware imperfections at the symbol level, indicating that optimum radio-frequency transceiver performance is possible. Nevertheless, such approaches neglect the error correcting codes used in wireless networks, which inspires machine learning (ML)-approaches that learn and minimise hardware imperfections at the bit level. In the present work, we evaluate a graph neural network (GNN)-based intelligent detector’s in-phase and quadrature imbalance (IQI) mitigation capabilities. We focus on a high-frequency, high-directional wireless system where IQI affects both the transmitter (TX) and the receiver (RX). The TX uses a GNN-based decoder, whilst the RX uses a linear error correcting algorithm. The bit error rate (BER) is computed using appropriate Monte Carlo simulations to quantity performance. Finally, the outcomes are compared to both traditional systems using conventional detectors and wireless systems using belief propagation based detectors. Due to the utilization of graph neural networks, the proposed algorithm is highly scalable with few training parameters and is able to adapt to various code parameters.\",\"PeriodicalId\":363999,\"journal\":{\"name\":\"2023 International Balkan Conference on Communications and Networking (BalkanCom)\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Balkan Conference on Communications and Networking (BalkanCom)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BalkanCom58402.2023.10167895\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Balkan Conference on Communications and Networking (BalkanCom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BalkanCom58402.2023.10167895","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

直到最近,研究人员使用机器学习方法来补偿符号级别的硬件缺陷,这表明最佳的射频收发器性能是可能的。然而,这些方法忽略了无线网络中使用的纠错码,这激发了机器学习(ML)——在比特级别学习和最小化硬件缺陷的方法。在本工作中,我们评估了基于图神经网络(GNN)的智能检测器的同相和正交不平衡(IQI)缓解能力。我们专注于一个高频、高方向的无线系统,其中IQI影响发射器(TX)和接收器(RX)。TX使用基于gnn的解码器,而RX使用线性纠错算法。误码率(BER)是通过适当的蒙特卡罗模拟来计算的。最后,将结果与使用传统检测器的传统系统和使用基于信念传播检测器的无线系统进行了比较。由于利用了图神经网络,该算法具有较强的可扩展性,训练参数较少,能够适应各种代码参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Can graph neural network-based detection mitigate the impact of hardware imperfections?
Until recently, researchers used machine learning methods to compensate for hardware imperfections at the symbol level, indicating that optimum radio-frequency transceiver performance is possible. Nevertheless, such approaches neglect the error correcting codes used in wireless networks, which inspires machine learning (ML)-approaches that learn and minimise hardware imperfections at the bit level. In the present work, we evaluate a graph neural network (GNN)-based intelligent detector’s in-phase and quadrature imbalance (IQI) mitigation capabilities. We focus on a high-frequency, high-directional wireless system where IQI affects both the transmitter (TX) and the receiver (RX). The TX uses a GNN-based decoder, whilst the RX uses a linear error correcting algorithm. The bit error rate (BER) is computed using appropriate Monte Carlo simulations to quantity performance. Finally, the outcomes are compared to both traditional systems using conventional detectors and wireless systems using belief propagation based detectors. Due to the utilization of graph neural networks, the proposed algorithm is highly scalable with few training parameters and is able to adapt to various code parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信