改进了工体的分层耕作设计

I. Bozhko, G. G. Parhomenko, S. Kambulov
{"title":"改进了工体的分层耕作设计","authors":"I. Bozhko, G. G. Parhomenko, S. Kambulov","doi":"10.17816/0321-4443-66398","DOIUrl":null,"url":null,"abstract":"Tillage is considered to be the methods of mechanical impact on the soil, contributing to the improvement of its fertility and the creation of better conditions for the growth and development of plants. Layerless processing without cover takes one of the most significant operations carried out during the preparation of the soil. This is confirmed by the fact that layer-by-layer processing promotes the accumulation of moisture inside the soil layer, the separation of the seam into layers, and the reduction of soil erosion. The aim of the research is to improve the design features of the main elements of the working body for layer-by-layer soilless tillage. Based on the methods of analysis and synthesis of research, as well as modeling, an improved design of the working body was proposed. It provides for the possibility of replacing almost all the main elements as they wear out, which in turn indicates a high level of wear resistance of the developed structure and a significant reduction in labor costs during its maintenance. In addition to the use of metal basic elements of various shapes (flat-cutter, curvilinear ripper) in the design of the working body, the use of ultra-high-molecular polyethylene inserts partially or completely replacing the main structural elements of the working body is also provided. Experimental studies have found that the traction resistance of the working body using a flat-ripper in the construction is 9,30 kN, with a curvilinear ripper 8,04 kN, which is 13,56 % lower than the flat-cutter. With the use of ultra-high molecular polyethylene inserts, a decrease in traction resistance of up to 7,6 kN was observed, which is 18,28 % lower compared to a flat-ripper. The proposed design allows layer-by-layer soilless tillage, carrying out at the same time a deep 25-35 cm and shallow 12-16 cm tillage, and also allows to obtain an aligned field background after the passage of the unit.","PeriodicalId":136662,"journal":{"name":"Traktory i sel hozmashiny","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Improving the design of the working body for layer-by-layer tillage\",\"authors\":\"I. Bozhko, G. G. Parhomenko, S. Kambulov\",\"doi\":\"10.17816/0321-4443-66398\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tillage is considered to be the methods of mechanical impact on the soil, contributing to the improvement of its fertility and the creation of better conditions for the growth and development of plants. Layerless processing without cover takes one of the most significant operations carried out during the preparation of the soil. This is confirmed by the fact that layer-by-layer processing promotes the accumulation of moisture inside the soil layer, the separation of the seam into layers, and the reduction of soil erosion. The aim of the research is to improve the design features of the main elements of the working body for layer-by-layer soilless tillage. Based on the methods of analysis and synthesis of research, as well as modeling, an improved design of the working body was proposed. It provides for the possibility of replacing almost all the main elements as they wear out, which in turn indicates a high level of wear resistance of the developed structure and a significant reduction in labor costs during its maintenance. In addition to the use of metal basic elements of various shapes (flat-cutter, curvilinear ripper) in the design of the working body, the use of ultra-high-molecular polyethylene inserts partially or completely replacing the main structural elements of the working body is also provided. Experimental studies have found that the traction resistance of the working body using a flat-ripper in the construction is 9,30 kN, with a curvilinear ripper 8,04 kN, which is 13,56 % lower than the flat-cutter. With the use of ultra-high molecular polyethylene inserts, a decrease in traction resistance of up to 7,6 kN was observed, which is 18,28 % lower compared to a flat-ripper. The proposed design allows layer-by-layer soilless tillage, carrying out at the same time a deep 25-35 cm and shallow 12-16 cm tillage, and also allows to obtain an aligned field background after the passage of the unit.\",\"PeriodicalId\":136662,\"journal\":{\"name\":\"Traktory i sel hozmashiny\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Traktory i sel hozmashiny\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17816/0321-4443-66398\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Traktory i sel hozmashiny","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17816/0321-4443-66398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

耕作被认为是一种对土壤进行机械影响的方法,有助于提高土壤的肥力,为植物的生长和发育创造更好的条件。无覆盖的无层处理是土壤准备过程中最重要的操作之一。这一点可以通过逐层处理促进土层内水分的积累,使煤层分层分离,减少土壤侵蚀得到证实。研究的目的是改进分层无土耕作工体主要元件的设计特点。在分析、综合研究和建模的基础上,提出了工作机构的改进设计方案。它提供了在磨损时更换几乎所有主要元件的可能性,这反过来表明开发的结构具有高水平的耐磨性,并且在维护过程中显著降低了人工成本。在工作体的设计中除了使用各种形状的金属基本元件(平刀、曲线刀)外,还提供了使用超高分子聚乙烯镶件部分或全部替代工作体的主要结构元件。试验研究发现,施工中采用平刀的工体牵引阻力为9.30 kN,采用曲线刀的工体牵引阻力为8.04 kN,比平刀的工体牵引阻力低13.56%。通过使用超高分子聚乙烯嵌套,观察到牵引阻力降低高达7,6 kN,与平裂器相比降低了18.28%。提出的设计允许逐层无土耕作,同时进行深25-35厘米和浅12-16厘米的耕作,并且还允许在单元通过后获得对齐的田间背景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving the design of the working body for layer-by-layer tillage
Tillage is considered to be the methods of mechanical impact on the soil, contributing to the improvement of its fertility and the creation of better conditions for the growth and development of plants. Layerless processing without cover takes one of the most significant operations carried out during the preparation of the soil. This is confirmed by the fact that layer-by-layer processing promotes the accumulation of moisture inside the soil layer, the separation of the seam into layers, and the reduction of soil erosion. The aim of the research is to improve the design features of the main elements of the working body for layer-by-layer soilless tillage. Based on the methods of analysis and synthesis of research, as well as modeling, an improved design of the working body was proposed. It provides for the possibility of replacing almost all the main elements as they wear out, which in turn indicates a high level of wear resistance of the developed structure and a significant reduction in labor costs during its maintenance. In addition to the use of metal basic elements of various shapes (flat-cutter, curvilinear ripper) in the design of the working body, the use of ultra-high-molecular polyethylene inserts partially or completely replacing the main structural elements of the working body is also provided. Experimental studies have found that the traction resistance of the working body using a flat-ripper in the construction is 9,30 kN, with a curvilinear ripper 8,04 kN, which is 13,56 % lower than the flat-cutter. With the use of ultra-high molecular polyethylene inserts, a decrease in traction resistance of up to 7,6 kN was observed, which is 18,28 % lower compared to a flat-ripper. The proposed design allows layer-by-layer soilless tillage, carrying out at the same time a deep 25-35 cm and shallow 12-16 cm tillage, and also allows to obtain an aligned field background after the passage of the unit.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信