{"title":"基于工作需求分析的固定优先级实时系统动态电压缩放算法","authors":"Woonseok Kim, Jihong Kim, S. Min","doi":"10.1145/871506.871605","DOIUrl":null,"url":null,"abstract":"Dynamic Voltage Scaling (DVS), which adjusts the clock speed and supply voltage dynamically, is an effective technique in reducing the energy consumption of embedded real-time systems. Unlike dynamic-priority real-time scheduling for which highly effective DVS algorithms are available, existing fixed-priority DVS algorithms are less effective in energy efficiency because they are based on inefficient slack estimation methods. This paper describes an efficient on-line slack estimation heuristic for the rate-monotonic (RM) scheduling. The proposed heuristic estimates the slack times using the short term work-demand analysis. The DVS algorithm,based on-the proposed heuristic is also presented. Experimental results show that the proposed DVS algorithm reduces the energy consumption by 25/spl sim/42% over the existing rate-monotonic DVS algorithms.","PeriodicalId":355883,"journal":{"name":"Proceedings of the 2003 International Symposium on Low Power Electronics and Design, 2003. ISLPED '03.","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"61","resultStr":"{\"title\":\"Dynamic voltage scaling algorithm for fixed-priority real-time systems using work-demand analysis\",\"authors\":\"Woonseok Kim, Jihong Kim, S. Min\",\"doi\":\"10.1145/871506.871605\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dynamic Voltage Scaling (DVS), which adjusts the clock speed and supply voltage dynamically, is an effective technique in reducing the energy consumption of embedded real-time systems. Unlike dynamic-priority real-time scheduling for which highly effective DVS algorithms are available, existing fixed-priority DVS algorithms are less effective in energy efficiency because they are based on inefficient slack estimation methods. This paper describes an efficient on-line slack estimation heuristic for the rate-monotonic (RM) scheduling. The proposed heuristic estimates the slack times using the short term work-demand analysis. The DVS algorithm,based on-the proposed heuristic is also presented. Experimental results show that the proposed DVS algorithm reduces the energy consumption by 25/spl sim/42% over the existing rate-monotonic DVS algorithms.\",\"PeriodicalId\":355883,\"journal\":{\"name\":\"Proceedings of the 2003 International Symposium on Low Power Electronics and Design, 2003. ISLPED '03.\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"61\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2003 International Symposium on Low Power Electronics and Design, 2003. ISLPED '03.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/871506.871605\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2003 International Symposium on Low Power Electronics and Design, 2003. ISLPED '03.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/871506.871605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dynamic voltage scaling algorithm for fixed-priority real-time systems using work-demand analysis
Dynamic Voltage Scaling (DVS), which adjusts the clock speed and supply voltage dynamically, is an effective technique in reducing the energy consumption of embedded real-time systems. Unlike dynamic-priority real-time scheduling for which highly effective DVS algorithms are available, existing fixed-priority DVS algorithms are less effective in energy efficiency because they are based on inefficient slack estimation methods. This paper describes an efficient on-line slack estimation heuristic for the rate-monotonic (RM) scheduling. The proposed heuristic estimates the slack times using the short term work-demand analysis. The DVS algorithm,based on-the proposed heuristic is also presented. Experimental results show that the proposed DVS algorithm reduces the energy consumption by 25/spl sim/42% over the existing rate-monotonic DVS algorithms.