{"title":"信道估计不完善的瑞利衰落环境下的OFDM-MIMO通信系统","authors":"S. Gifford, J. Kleider, S. Chuprun","doi":"10.1109/MILCOM.2003.1290177","DOIUrl":null,"url":null,"abstract":"This paper presents the performance of mobile orthogonal frequency division multiplexing (OFDM) multiple-input multiple-output (MIMO) communication systems with imperfect knowledge of the channel matrix. MIMO systems typically require a channel matrix, which can be determined initially from a training sequence. However, mobile communication systems exhibit a time-varying channel matrix and have time and frequency selective fades which result in performance degradation of the MlMO system. Channel tracking methods can be used to estimate the time-varying channel matrix but cannot in practice be error free. This paper presents results of V-BLAST (vertical Bell Laboratories layered space-time) MlMO simulations using the geometric wideband time-varying channel model (GWTCM) with Rayleigh faded environments and imperfect channel matrix knowledge. Flat fading is assumed for each OFDM subcarrier. OFDM-MIMO architectures such as OFDM coupled with V-BLAST can be easily implemented by exploiting the built-in and flexible multi-channel architectures of advanced software defined radios (SDR).","PeriodicalId":435910,"journal":{"name":"IEEE Military Communications Conference, 2003. MILCOM 2003.","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"OFDM-MIMO communication systems in a Rayleigh faded environment with imperfect channel estimates\",\"authors\":\"S. Gifford, J. Kleider, S. Chuprun\",\"doi\":\"10.1109/MILCOM.2003.1290177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the performance of mobile orthogonal frequency division multiplexing (OFDM) multiple-input multiple-output (MIMO) communication systems with imperfect knowledge of the channel matrix. MIMO systems typically require a channel matrix, which can be determined initially from a training sequence. However, mobile communication systems exhibit a time-varying channel matrix and have time and frequency selective fades which result in performance degradation of the MlMO system. Channel tracking methods can be used to estimate the time-varying channel matrix but cannot in practice be error free. This paper presents results of V-BLAST (vertical Bell Laboratories layered space-time) MlMO simulations using the geometric wideband time-varying channel model (GWTCM) with Rayleigh faded environments and imperfect channel matrix knowledge. Flat fading is assumed for each OFDM subcarrier. OFDM-MIMO architectures such as OFDM coupled with V-BLAST can be easily implemented by exploiting the built-in and flexible multi-channel architectures of advanced software defined radios (SDR).\",\"PeriodicalId\":435910,\"journal\":{\"name\":\"IEEE Military Communications Conference, 2003. MILCOM 2003.\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Military Communications Conference, 2003. MILCOM 2003.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MILCOM.2003.1290177\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Military Communications Conference, 2003. MILCOM 2003.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MILCOM.2003.1290177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
OFDM-MIMO communication systems in a Rayleigh faded environment with imperfect channel estimates
This paper presents the performance of mobile orthogonal frequency division multiplexing (OFDM) multiple-input multiple-output (MIMO) communication systems with imperfect knowledge of the channel matrix. MIMO systems typically require a channel matrix, which can be determined initially from a training sequence. However, mobile communication systems exhibit a time-varying channel matrix and have time and frequency selective fades which result in performance degradation of the MlMO system. Channel tracking methods can be used to estimate the time-varying channel matrix but cannot in practice be error free. This paper presents results of V-BLAST (vertical Bell Laboratories layered space-time) MlMO simulations using the geometric wideband time-varying channel model (GWTCM) with Rayleigh faded environments and imperfect channel matrix knowledge. Flat fading is assumed for each OFDM subcarrier. OFDM-MIMO architectures such as OFDM coupled with V-BLAST can be easily implemented by exploiting the built-in and flexible multi-channel architectures of advanced software defined radios (SDR).