{"title":"具有时间约束的多机器人系统协同任务规划","authors":"Feng‐Li Lian, R. Murray","doi":"10.1109/ROBOT.2003.1241969","DOIUrl":null,"url":null,"abstract":"This paper discusses a design methodology of cooperative trajectory generation for multi-robot systems. The trajectory of achieving cooperative tasks, i.e., with temporal constraints, is constructed by a nonlinear trajectory generation (NTG) algorithm. Three scenarios of multi-robot tasking are proposed at the cooperative task planning framework. The NTG algorithm is, then, used to generate real-time trajectory for desired robot activities. Given robot dynamics and constraints, the NTG algorithm first finds trajectory curves in a lower dimensional space and parameterizes the curves by a set of B-spline representations. The coefficients of the B-splines are further solved by sequential quadratic programming to satisfy the optimization objectives and constraints. The NTG algorithm has been implemented to generate real-time trajectories for a group of cooperative robots in the presence of spatial and temporal constraints. Finally, an illustrated example of cooperative task planning with temporal constraints is presented.","PeriodicalId":315346,"journal":{"name":"2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422)","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Cooperative task planning of multi-robot systems with temporal constraints\",\"authors\":\"Feng‐Li Lian, R. Murray\",\"doi\":\"10.1109/ROBOT.2003.1241969\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses a design methodology of cooperative trajectory generation for multi-robot systems. The trajectory of achieving cooperative tasks, i.e., with temporal constraints, is constructed by a nonlinear trajectory generation (NTG) algorithm. Three scenarios of multi-robot tasking are proposed at the cooperative task planning framework. The NTG algorithm is, then, used to generate real-time trajectory for desired robot activities. Given robot dynamics and constraints, the NTG algorithm first finds trajectory curves in a lower dimensional space and parameterizes the curves by a set of B-spline representations. The coefficients of the B-splines are further solved by sequential quadratic programming to satisfy the optimization objectives and constraints. The NTG algorithm has been implemented to generate real-time trajectories for a group of cooperative robots in the presence of spatial and temporal constraints. Finally, an illustrated example of cooperative task planning with temporal constraints is presented.\",\"PeriodicalId\":315346,\"journal\":{\"name\":\"2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422)\",\"volume\":\"115 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROBOT.2003.1241969\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBOT.2003.1241969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cooperative task planning of multi-robot systems with temporal constraints
This paper discusses a design methodology of cooperative trajectory generation for multi-robot systems. The trajectory of achieving cooperative tasks, i.e., with temporal constraints, is constructed by a nonlinear trajectory generation (NTG) algorithm. Three scenarios of multi-robot tasking are proposed at the cooperative task planning framework. The NTG algorithm is, then, used to generate real-time trajectory for desired robot activities. Given robot dynamics and constraints, the NTG algorithm first finds trajectory curves in a lower dimensional space and parameterizes the curves by a set of B-spline representations. The coefficients of the B-splines are further solved by sequential quadratic programming to satisfy the optimization objectives and constraints. The NTG algorithm has been implemented to generate real-time trajectories for a group of cooperative robots in the presence of spatial and temporal constraints. Finally, an illustrated example of cooperative task planning with temporal constraints is presented.