具有超快速dV/dt嵌入式控制的CMOS栅极驱动器,致力于GaN功率晶体管的最佳EMI和导通损耗管理

Plinio Bau, M. Cousineau, B. Cougo, F. Richardeau, D. Colin, N. Rouger
{"title":"具有超快速dV/dt嵌入式控制的CMOS栅极驱动器,致力于GaN功率晶体管的最佳EMI和导通损耗管理","authors":"Plinio Bau, M. Cousineau, B. Cougo, F. Richardeau, D. Colin, N. Rouger","doi":"10.1109/PRIME.2018.8430331","DOIUrl":null,"url":null,"abstract":"In this paper, a CMOS gate driver in $180\\mathrm {n}\\mathrm {m}$ technology is presented. The gate driver implements an integrated and independent ultra-fast $\\mathrm {d}\\mathrm {V}/\\mathrm {d}\\mathrm {t}$ control circuit dedicated to manage switch-on transients for $\\mathrm {G}\\mathrm {a}\\mathrm {N}$ HEMT technology. In order to mitigate a detrimental effect in EMI spectrum for wide bandgap transistors, a novel method to reduce $\\mathrm {d}\\mathrm {V}/\\mathrm {d}\\mathrm {t}$ without increasing so much switching losses is proposed. A comprehensive benchmark with the classical method is also presented, where the gate driver resistance is typically adjusted. Simulations are conducted to show the feasibility of the proposed method and the amount of switching energy that can be saved. Time responses of a feedback loop lower than $200\\mathrm {p}\\mathrm {s}$ are expected. The preliminary characterization of the integrated CMOS circuit is shown.","PeriodicalId":384458,"journal":{"name":"2018 14th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME)","volume":"224 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"A CMOS gate driver with ultra-fast dV/dt embedded control dedicated to optimum EMI and turn-on losses management for GaN power transistors\",\"authors\":\"Plinio Bau, M. Cousineau, B. Cougo, F. Richardeau, D. Colin, N. Rouger\",\"doi\":\"10.1109/PRIME.2018.8430331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a CMOS gate driver in $180\\\\mathrm {n}\\\\mathrm {m}$ technology is presented. The gate driver implements an integrated and independent ultra-fast $\\\\mathrm {d}\\\\mathrm {V}/\\\\mathrm {d}\\\\mathrm {t}$ control circuit dedicated to manage switch-on transients for $\\\\mathrm {G}\\\\mathrm {a}\\\\mathrm {N}$ HEMT technology. In order to mitigate a detrimental effect in EMI spectrum for wide bandgap transistors, a novel method to reduce $\\\\mathrm {d}\\\\mathrm {V}/\\\\mathrm {d}\\\\mathrm {t}$ without increasing so much switching losses is proposed. A comprehensive benchmark with the classical method is also presented, where the gate driver resistance is typically adjusted. Simulations are conducted to show the feasibility of the proposed method and the amount of switching energy that can be saved. Time responses of a feedback loop lower than $200\\\\mathrm {p}\\\\mathrm {s}$ are expected. The preliminary characterization of the integrated CMOS circuit is shown.\",\"PeriodicalId\":384458,\"journal\":{\"name\":\"2018 14th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME)\",\"volume\":\"224 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 14th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PRIME.2018.8430331\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 14th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRIME.2018.8430331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

本文介绍了一种采用$180\ mathm {n}\ mathm {m}$技术的CMOS栅极驱动器。栅极驱动器实现了一个集成和独立的超快速$\ mathm {d}\ mathm {V}/\ mathm {d}\ mathm {t}$控制电路,专门用于管理$\ mathm {G}\ mathm {a}\ mathm {N}$ HEMT技术的导通瞬态。为了减轻宽禁带晶体管对电磁干扰频谱的不利影响,提出了一种在不增加太多开关损耗的情况下降低$\ mathm {d}\ mathm {V}/\ mathm {d}\ mathm {t}$的新方法。本文还提出了一种综合基准测试的经典方法,其中栅极驱动器电阻进行了典型的调整。仿真结果表明了该方法的可行性和所节省的开关能量。期望反馈回路的时间响应低于$200\ mathm {p}\ mathm {s}$。给出了集成CMOS电路的初步表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A CMOS gate driver with ultra-fast dV/dt embedded control dedicated to optimum EMI and turn-on losses management for GaN power transistors
In this paper, a CMOS gate driver in $180\mathrm {n}\mathrm {m}$ technology is presented. The gate driver implements an integrated and independent ultra-fast $\mathrm {d}\mathrm {V}/\mathrm {d}\mathrm {t}$ control circuit dedicated to manage switch-on transients for $\mathrm {G}\mathrm {a}\mathrm {N}$ HEMT technology. In order to mitigate a detrimental effect in EMI spectrum for wide bandgap transistors, a novel method to reduce $\mathrm {d}\mathrm {V}/\mathrm {d}\mathrm {t}$ without increasing so much switching losses is proposed. A comprehensive benchmark with the classical method is also presented, where the gate driver resistance is typically adjusted. Simulations are conducted to show the feasibility of the proposed method and the amount of switching energy that can be saved. Time responses of a feedback loop lower than $200\mathrm {p}\mathrm {s}$ are expected. The preliminary characterization of the integrated CMOS circuit is shown.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信