{"title":"使用像素截断的VBSME低功耗硬件架构","authors":"A. Bahari, T. Arslan, A. Erdogan","doi":"10.1109/VLSI.2008.100","DOIUrl":null,"url":null,"abstract":"This paper presents an efficient architecture to implement low power variable block size motion estimation (VBSME) using full search. Power reduction is achieved by performing the search in two steps: low pixel resolution and full pixel resolution. We analysed the computation and memory units needed to support these two search modes. The proposed architecture reduces the total energy consumption by 50% with 6% additional area compared to the conventional architecture.","PeriodicalId":143886,"journal":{"name":"21st International Conference on VLSI Design (VLSID 2008)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2008-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Low Power Hardware Architecture for VBSME Using Pixel Truncation\",\"authors\":\"A. Bahari, T. Arslan, A. Erdogan\",\"doi\":\"10.1109/VLSI.2008.100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an efficient architecture to implement low power variable block size motion estimation (VBSME) using full search. Power reduction is achieved by performing the search in two steps: low pixel resolution and full pixel resolution. We analysed the computation and memory units needed to support these two search modes. The proposed architecture reduces the total energy consumption by 50% with 6% additional area compared to the conventional architecture.\",\"PeriodicalId\":143886,\"journal\":{\"name\":\"21st International Conference on VLSI Design (VLSID 2008)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"21st International Conference on VLSI Design (VLSID 2008)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VLSI.2008.100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"21st International Conference on VLSI Design (VLSID 2008)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSI.2008.100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Low Power Hardware Architecture for VBSME Using Pixel Truncation
This paper presents an efficient architecture to implement low power variable block size motion estimation (VBSME) using full search. Power reduction is achieved by performing the search in two steps: low pixel resolution and full pixel resolution. We analysed the computation and memory units needed to support these two search modes. The proposed architecture reduces the total energy consumption by 50% with 6% additional area compared to the conventional architecture.