{"title":"基于感知线性预测特征的呼吸声分类用于健康-病理诊断","authors":"Sezer Ulukaya, Y. Kahya","doi":"10.1109/BIYOMUT.2014.7026343","DOIUrl":null,"url":null,"abstract":"This study proposes a new model and feature extraction method for the classification of multi-channel respiratory sound data with the final aim of building a diagnosis aid tool for the medical doctor. Fourteen-channel data are processed separately and combined at feature level and fed to the support vector machines with radial basis kernel. Healthy-pathological subject based binary classification is employed where the recall rates for the healthy class and pathological class are 95 percent and 80 percent, respectively. The minimum precision rate is 80 percent. The method, when supported by additional features (adventitious sound frequency, type, etc.), may be employed in clinical practice as an aiding decision maker.","PeriodicalId":428610,"journal":{"name":"2014 18th National Biomedical Engineering Meeting","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Respiratory sound classification using perceptual linear prediction features for healthy - Pathological diagnosis\",\"authors\":\"Sezer Ulukaya, Y. Kahya\",\"doi\":\"10.1109/BIYOMUT.2014.7026343\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study proposes a new model and feature extraction method for the classification of multi-channel respiratory sound data with the final aim of building a diagnosis aid tool for the medical doctor. Fourteen-channel data are processed separately and combined at feature level and fed to the support vector machines with radial basis kernel. Healthy-pathological subject based binary classification is employed where the recall rates for the healthy class and pathological class are 95 percent and 80 percent, respectively. The minimum precision rate is 80 percent. The method, when supported by additional features (adventitious sound frequency, type, etc.), may be employed in clinical practice as an aiding decision maker.\",\"PeriodicalId\":428610,\"journal\":{\"name\":\"2014 18th National Biomedical Engineering Meeting\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 18th National Biomedical Engineering Meeting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIYOMUT.2014.7026343\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 18th National Biomedical Engineering Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIYOMUT.2014.7026343","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Respiratory sound classification using perceptual linear prediction features for healthy - Pathological diagnosis
This study proposes a new model and feature extraction method for the classification of multi-channel respiratory sound data with the final aim of building a diagnosis aid tool for the medical doctor. Fourteen-channel data are processed separately and combined at feature level and fed to the support vector machines with radial basis kernel. Healthy-pathological subject based binary classification is employed where the recall rates for the healthy class and pathological class are 95 percent and 80 percent, respectively. The minimum precision rate is 80 percent. The method, when supported by additional features (adventitious sound frequency, type, etc.), may be employed in clinical practice as an aiding decision maker.