RRAM突触中STDP学习的吸引子网络和联想记忆

V. Milo, Daniele Ielmini, Elisabetta Chicca
{"title":"RRAM突触中STDP学习的吸引子网络和联想记忆","authors":"V. Milo, Daniele Ielmini, Elisabetta Chicca","doi":"10.1109/IEDM.2017.8268369","DOIUrl":null,"url":null,"abstract":"Attractor networks can realistically describe neurophysiological processes while providing useful computational modules for pattern recognition, signal restoration, and feature extraction. To implement attractor networks in small-area integrated circuits, the development of a hybrid technology including CMOS transistors and resistive switching memory (RRAM) is essential. This work presents a summary of recent results toward implementing RRAM-based attractor networks. Based on realistic models of HfO2 RRAM devices, we design and simulate recurrent networks showing the capability to train, recall and sustain attractors. The results support the feasibility of RRAM-based bio-realistic attractor networks.","PeriodicalId":412333,"journal":{"name":"2017 IEEE International Electron Devices Meeting (IEDM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Attractor networks and associative memories with STDP learning in RRAM synapses\",\"authors\":\"V. Milo, Daniele Ielmini, Elisabetta Chicca\",\"doi\":\"10.1109/IEDM.2017.8268369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Attractor networks can realistically describe neurophysiological processes while providing useful computational modules for pattern recognition, signal restoration, and feature extraction. To implement attractor networks in small-area integrated circuits, the development of a hybrid technology including CMOS transistors and resistive switching memory (RRAM) is essential. This work presents a summary of recent results toward implementing RRAM-based attractor networks. Based on realistic models of HfO2 RRAM devices, we design and simulate recurrent networks showing the capability to train, recall and sustain attractors. The results support the feasibility of RRAM-based bio-realistic attractor networks.\",\"PeriodicalId\":412333,\"journal\":{\"name\":\"2017 IEEE International Electron Devices Meeting (IEDM)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Electron Devices Meeting (IEDM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEDM.2017.8268369\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Electron Devices Meeting (IEDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.2017.8268369","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

吸引子网络可以真实地描述神经生理过程,同时为模式识别、信号恢复和特征提取提供有用的计算模块。为了在小面积集成电路中实现吸引子网络,开发一种包括CMOS晶体管和电阻开关存储器(RRAM)的混合技术是必不可少的。这项工作提出了对实现基于ram的吸引子网络的最新结果的总结。基于HfO2 RRAM器件的现实模型,我们设计并模拟了循环网络,展示了训练、回忆和维持吸引子的能力。研究结果支持了基于rram的生物逼真吸引子网络的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Attractor networks and associative memories with STDP learning in RRAM synapses
Attractor networks can realistically describe neurophysiological processes while providing useful computational modules for pattern recognition, signal restoration, and feature extraction. To implement attractor networks in small-area integrated circuits, the development of a hybrid technology including CMOS transistors and resistive switching memory (RRAM) is essential. This work presents a summary of recent results toward implementing RRAM-based attractor networks. Based on realistic models of HfO2 RRAM devices, we design and simulate recurrent networks showing the capability to train, recall and sustain attractors. The results support the feasibility of RRAM-based bio-realistic attractor networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信