G. Improta, Ylenia Colella, Giovanni Rossi, A. Borrelli, Giuseppe Russo, M. Triassi
{"title":"使用机器学习来预测急诊科的放弃率","authors":"G. Improta, Ylenia Colella, Giovanni Rossi, A. Borrelli, Giuseppe Russo, M. Triassi","doi":"10.1145/3498731.3498755","DOIUrl":null,"url":null,"abstract":"Overcrowding is a serious issue that Emergency Departments (EDs) must deal with, since it is leading to longer delays and greater patients’ dissatisfaction, which are directly connected with an increasing number of patients who leave the ED prematurely. Hospital is affected by this aspect in terms of lost revenues from opportunities missed in providing care and adverse outcomes deriving from ED process. For this reason, the ability to control and predict in advance patients who leave ED without any evaluation becomes strategic for healthcare administrators. The purpose of this work is to investigate causes that determine patients who leave the ED without being seen. Machine Learning algorithms are used in order to build and compare different models for LWBS prediction, with the aim of obtaining a helpful support tool for the ED management in healthcare facilities.","PeriodicalId":166893,"journal":{"name":"Proceedings of the 2021 10th International Conference on Bioinformatics and Biomedical Science","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Use of machine learning to predict abandonment rates in an emergency department\",\"authors\":\"G. Improta, Ylenia Colella, Giovanni Rossi, A. Borrelli, Giuseppe Russo, M. Triassi\",\"doi\":\"10.1145/3498731.3498755\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Overcrowding is a serious issue that Emergency Departments (EDs) must deal with, since it is leading to longer delays and greater patients’ dissatisfaction, which are directly connected with an increasing number of patients who leave the ED prematurely. Hospital is affected by this aspect in terms of lost revenues from opportunities missed in providing care and adverse outcomes deriving from ED process. For this reason, the ability to control and predict in advance patients who leave ED without any evaluation becomes strategic for healthcare administrators. The purpose of this work is to investigate causes that determine patients who leave the ED without being seen. Machine Learning algorithms are used in order to build and compare different models for LWBS prediction, with the aim of obtaining a helpful support tool for the ED management in healthcare facilities.\",\"PeriodicalId\":166893,\"journal\":{\"name\":\"Proceedings of the 2021 10th International Conference on Bioinformatics and Biomedical Science\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2021 10th International Conference on Bioinformatics and Biomedical Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3498731.3498755\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 10th International Conference on Bioinformatics and Biomedical Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3498731.3498755","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Use of machine learning to predict abandonment rates in an emergency department
Overcrowding is a serious issue that Emergency Departments (EDs) must deal with, since it is leading to longer delays and greater patients’ dissatisfaction, which are directly connected with an increasing number of patients who leave the ED prematurely. Hospital is affected by this aspect in terms of lost revenues from opportunities missed in providing care and adverse outcomes deriving from ED process. For this reason, the ability to control and predict in advance patients who leave ED without any evaluation becomes strategic for healthcare administrators. The purpose of this work is to investigate causes that determine patients who leave the ED without being seen. Machine Learning algorithms are used in order to build and compare different models for LWBS prediction, with the aim of obtaining a helpful support tool for the ED management in healthcare facilities.