高等基数数值计算基础

D. Matula
{"title":"高等基数数值计算基础","authors":"D. Matula","doi":"10.1109/ISMVL.2008.49","DOIUrl":null,"url":null,"abstract":"Radix arithmetic is based on radix polynomials with addition and multiplication being polynomial arithmetic. The distinguishing feature of radix polynomials is the carry operation which identifies congruent radix polynomials modulo (x - r) where the constant r is the radix. The carry operation can be employed to reduce the range of coefficients of polynomials over the integers to prescribed \"digit sets\" which may provide canonical representations or allow redundancy. We describe choices of digit sets for higher radices employed to allow more efficient hardware depending on properties of the circuitry, whether binary or multi-valued. We describe current applications of non standard digit sets in commodity microprocessors. We close with some observations on a discrete log representation of integers where the logarithmic base is a small prime.","PeriodicalId":243752,"journal":{"name":"38th International Symposium on Multiple Valued Logic (ismvl 2008)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Foundations of Higher Radix Numeric Computation\",\"authors\":\"D. Matula\",\"doi\":\"10.1109/ISMVL.2008.49\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Radix arithmetic is based on radix polynomials with addition and multiplication being polynomial arithmetic. The distinguishing feature of radix polynomials is the carry operation which identifies congruent radix polynomials modulo (x - r) where the constant r is the radix. The carry operation can be employed to reduce the range of coefficients of polynomials over the integers to prescribed \\\"digit sets\\\" which may provide canonical representations or allow redundancy. We describe choices of digit sets for higher radices employed to allow more efficient hardware depending on properties of the circuitry, whether binary or multi-valued. We describe current applications of non standard digit sets in commodity microprocessors. We close with some observations on a discrete log representation of integers where the logarithmic base is a small prime.\",\"PeriodicalId\":243752,\"journal\":{\"name\":\"38th International Symposium on Multiple Valued Logic (ismvl 2008)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"38th International Symposium on Multiple Valued Logic (ismvl 2008)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMVL.2008.49\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"38th International Symposium on Multiple Valued Logic (ismvl 2008)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.2008.49","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基数算术是基于基数多项式的,加法和乘法是多项式算术。基数多项式的显著特征是进位运算,它可以识别出同余的基数多项式模(x - r),其中常数r是基数。进位运算可用于将整数上多项式系数的范围减小到规定的“数字集”,这些“数字集”可以提供规范表示或允许冗余。我们根据电路的特性(无论是二进制的还是多值的)描述了更高进位的数字集的选择,以允许更高效的硬件。我们描述了目前非标准数字集在商用微处理器中的应用。最后,我们对整数的离散对数表示进行了一些观察,其中对数底是一个小素数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Foundations of Higher Radix Numeric Computation
Radix arithmetic is based on radix polynomials with addition and multiplication being polynomial arithmetic. The distinguishing feature of radix polynomials is the carry operation which identifies congruent radix polynomials modulo (x - r) where the constant r is the radix. The carry operation can be employed to reduce the range of coefficients of polynomials over the integers to prescribed "digit sets" which may provide canonical representations or allow redundancy. We describe choices of digit sets for higher radices employed to allow more efficient hardware depending on properties of the circuitry, whether binary or multi-valued. We describe current applications of non standard digit sets in commodity microprocessors. We close with some observations on a discrete log representation of integers where the logarithmic base is a small prime.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信