基于支持向量机的射频电路性能建模与优化

X. Ren, T. Kazmierski
{"title":"基于支持向量机的射频电路性能建模与优化","authors":"X. Ren, T. Kazmierski","doi":"10.1109/MIXDES.2007.4286176","DOIUrl":null,"url":null,"abstract":"The paper presents a novel approach to efficient performance modelling and optimisation which can be applied to automatic synthesis of circuit-level radio frequency (RF) analogue circuits. Support vector machines regression models are used to construct automatically general performance models for RF circuits which lend themselves naturally to pattern-search optimisation by exploring the design space. Experiments show that the approach can provide accurate and extremely fast performance estimation.","PeriodicalId":310187,"journal":{"name":"2007 14th International Conference on Mixed Design of Integrated Circuits and Systems","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Performance Modelling and Optimisation of RF Circuits using Support Vector Machines\",\"authors\":\"X. Ren, T. Kazmierski\",\"doi\":\"10.1109/MIXDES.2007.4286176\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents a novel approach to efficient performance modelling and optimisation which can be applied to automatic synthesis of circuit-level radio frequency (RF) analogue circuits. Support vector machines regression models are used to construct automatically general performance models for RF circuits which lend themselves naturally to pattern-search optimisation by exploring the design space. Experiments show that the approach can provide accurate and extremely fast performance estimation.\",\"PeriodicalId\":310187,\"journal\":{\"name\":\"2007 14th International Conference on Mixed Design of Integrated Circuits and Systems\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 14th International Conference on Mixed Design of Integrated Circuits and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MIXDES.2007.4286176\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 14th International Conference on Mixed Design of Integrated Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MIXDES.2007.4286176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

本文提出了一种有效的性能建模和优化的新方法,可应用于电路级射频模拟电路的自动合成。支持向量机回归模型用于自动构建射频电路的通用性能模型,该模型通过探索设计空间自然地为模式搜索优化提供支持。实验表明,该方法可以提供准确且极快的性能估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance Modelling and Optimisation of RF Circuits using Support Vector Machines
The paper presents a novel approach to efficient performance modelling and optimisation which can be applied to automatic synthesis of circuit-level radio frequency (RF) analogue circuits. Support vector machines regression models are used to construct automatically general performance models for RF circuits which lend themselves naturally to pattern-search optimisation by exploring the design space. Experiments show that the approach can provide accurate and extremely fast performance estimation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信