{"title":"辅助恢复运动功能的轻型柔性可穿戴机器人的基础研究","authors":"Kunihiro Ogata, Tomoyuki Yamamoto","doi":"10.1109/ROMAN.2014.6926235","DOIUrl":null,"url":null,"abstract":"Several exoskeleton robots have been developed for use in rehabilitation. These robots help users to execute transitive motion rehabilitation with power assist. We propose a new robotics system that executes automatic movement training using target motion instruction. The proposed robot is wearable with a flexible body like clothes, and is actuated using a wire-driven mechanism. The robotics system determines the desired posture based on the operator's posture. The robot executes a wire-driven force display based on the operator's pose and the target pose. We developed a prototype of this wearable robot, and verified the force display using wire-driven mechanism. Moreover, we proposed the multi-joint coordinated motion method, and evaluated the mechanical contribution of the proposed method quantitatively using computer simulations. The simulation results confirm that this robot can instruct the coordinated motion.","PeriodicalId":235810,"journal":{"name":"The 23rd IEEE International Symposium on Robot and Human Interactive Communication","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A fundamental study of light and flexible wearable robot assisting to recover movement functions\",\"authors\":\"Kunihiro Ogata, Tomoyuki Yamamoto\",\"doi\":\"10.1109/ROMAN.2014.6926235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Several exoskeleton robots have been developed for use in rehabilitation. These robots help users to execute transitive motion rehabilitation with power assist. We propose a new robotics system that executes automatic movement training using target motion instruction. The proposed robot is wearable with a flexible body like clothes, and is actuated using a wire-driven mechanism. The robotics system determines the desired posture based on the operator's posture. The robot executes a wire-driven force display based on the operator's pose and the target pose. We developed a prototype of this wearable robot, and verified the force display using wire-driven mechanism. Moreover, we proposed the multi-joint coordinated motion method, and evaluated the mechanical contribution of the proposed method quantitatively using computer simulations. The simulation results confirm that this robot can instruct the coordinated motion.\",\"PeriodicalId\":235810,\"journal\":{\"name\":\"The 23rd IEEE International Symposium on Robot and Human Interactive Communication\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 23rd IEEE International Symposium on Robot and Human Interactive Communication\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROMAN.2014.6926235\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 23rd IEEE International Symposium on Robot and Human Interactive Communication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROMAN.2014.6926235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A fundamental study of light and flexible wearable robot assisting to recover movement functions
Several exoskeleton robots have been developed for use in rehabilitation. These robots help users to execute transitive motion rehabilitation with power assist. We propose a new robotics system that executes automatic movement training using target motion instruction. The proposed robot is wearable with a flexible body like clothes, and is actuated using a wire-driven mechanism. The robotics system determines the desired posture based on the operator's posture. The robot executes a wire-driven force display based on the operator's pose and the target pose. We developed a prototype of this wearable robot, and verified the force display using wire-driven mechanism. Moreover, we proposed the multi-joint coordinated motion method, and evaluated the mechanical contribution of the proposed method quantitatively using computer simulations. The simulation results confirm that this robot can instruct the coordinated motion.