基于压力传感器的集成学习步态识别

Jinwon Jung, Y. Choi, Sang-Il Choi
{"title":"基于压力传感器的集成学习步态识别","authors":"Jinwon Jung, Y. Choi, Sang-Il Choi","doi":"10.1109/TENSYMP52854.2021.9550860","DOIUrl":null,"url":null,"abstract":"This paper proposes an ensemble deep learning model that can identify each person using pressure sensor data acquired from smart insoles. The ensemble model consists of CNN, LSTM, and self-attention to effectively learn the relationship between gait data. The model was trained using a triplet loss to map each data to a better embedding vector of latent space. The experimental results showed that the accuracy was improved in recognizing people by using the proposed ensemble learning while reducing the size of the model by half.","PeriodicalId":137485,"journal":{"name":"2021 IEEE Region 10 Symposium (TENSYMP)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Ensemble Learning Using Pressure Sensor for Gait Recognition\",\"authors\":\"Jinwon Jung, Y. Choi, Sang-Il Choi\",\"doi\":\"10.1109/TENSYMP52854.2021.9550860\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an ensemble deep learning model that can identify each person using pressure sensor data acquired from smart insoles. The ensemble model consists of CNN, LSTM, and self-attention to effectively learn the relationship between gait data. The model was trained using a triplet loss to map each data to a better embedding vector of latent space. The experimental results showed that the accuracy was improved in recognizing people by using the proposed ensemble learning while reducing the size of the model by half.\",\"PeriodicalId\":137485,\"journal\":{\"name\":\"2021 IEEE Region 10 Symposium (TENSYMP)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Region 10 Symposium (TENSYMP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TENSYMP52854.2021.9550860\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Region 10 Symposium (TENSYMP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENSYMP52854.2021.9550860","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一个集成深度学习模型,该模型可以使用从智能鞋垫获取的压力传感器数据来识别每个人。该集成模型由CNN、LSTM和自关注组成,可以有效地学习步态数据之间的关系。该模型使用三重损失来训练,将每个数据映射到一个更好的潜在空间嵌入向量。实验结果表明,采用本文提出的集成学习方法,在将模型大小减小一半的同时,提高了识别人的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ensemble Learning Using Pressure Sensor for Gait Recognition
This paper proposes an ensemble deep learning model that can identify each person using pressure sensor data acquired from smart insoles. The ensemble model consists of CNN, LSTM, and self-attention to effectively learn the relationship between gait data. The model was trained using a triplet loss to map each data to a better embedding vector of latent space. The experimental results showed that the accuracy was improved in recognizing people by using the proposed ensemble learning while reducing the size of the model by half.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信