受限与杂乱环境下的实时前沿探索仿真

I. Saleh, Nuradlin Borhan, Azan Yunus, W. Rahiman, D. Novaliendry, Risfendra
{"title":"受限与杂乱环境下的实时前沿探索仿真","authors":"I. Saleh, Nuradlin Borhan, Azan Yunus, W. Rahiman, D. Novaliendry, Risfendra","doi":"10.1109/I2CACIS57635.2023.10193051","DOIUrl":null,"url":null,"abstract":"This paper presents a real-time simulation of a frontier exploration robot using a nonholonomic mobile robot’s kinematic model. In MATLAB, three heuristic-based frontier selection methods, namely Randomized Histogram Sector (RHS), Informed Randomized Point (IRP), and Histogram Clustering (HC), were simulated within two constrained space maps, one of which (Map 1) contained more obstacles than the other (Map 2). For the suggested frontier detection, the percentage of successfully mapped area against the ground truth map was determined to be 97.5% for Map 1 and 98.3% for Map 2. These results indicate that the proposed method yields great results. The HC approach is the most effective of the three proposed methods for both maps in terms of the time required to explore the maps and the efficiency of navigation inside the maps.","PeriodicalId":244595,"journal":{"name":"2023 IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation of Real-Time Frontier Exploration in Confined & Cluttered Environment\",\"authors\":\"I. Saleh, Nuradlin Borhan, Azan Yunus, W. Rahiman, D. Novaliendry, Risfendra\",\"doi\":\"10.1109/I2CACIS57635.2023.10193051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a real-time simulation of a frontier exploration robot using a nonholonomic mobile robot’s kinematic model. In MATLAB, three heuristic-based frontier selection methods, namely Randomized Histogram Sector (RHS), Informed Randomized Point (IRP), and Histogram Clustering (HC), were simulated within two constrained space maps, one of which (Map 1) contained more obstacles than the other (Map 2). For the suggested frontier detection, the percentage of successfully mapped area against the ground truth map was determined to be 97.5% for Map 1 and 98.3% for Map 2. These results indicate that the proposed method yields great results. The HC approach is the most effective of the three proposed methods for both maps in terms of the time required to explore the maps and the efficiency of navigation inside the maps.\",\"PeriodicalId\":244595,\"journal\":{\"name\":\"2023 IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/I2CACIS57635.2023.10193051\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I2CACIS57635.2023.10193051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用非完整移动机器人的运动学模型,对边界探测机器人进行了实时仿真。在MATLAB中,模拟了随机直方图扇区(RHS)、信息随机点(IRP)和直方图聚类(HC)三种启发式边界选择方法在两个受限空间地图(Map 1)中包含较多障碍物(Map 2)的边界选择方法。对于建议的边界检测,Map 1和Map 2的边界检测成功率分别为97.5%和98.3%。这些结果表明,所提出的方法取得了很好的效果。就探索地图所需的时间和地图内部导航的效率而言,HC方法是三种提出的地图方法中最有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simulation of Real-Time Frontier Exploration in Confined & Cluttered Environment
This paper presents a real-time simulation of a frontier exploration robot using a nonholonomic mobile robot’s kinematic model. In MATLAB, three heuristic-based frontier selection methods, namely Randomized Histogram Sector (RHS), Informed Randomized Point (IRP), and Histogram Clustering (HC), were simulated within two constrained space maps, one of which (Map 1) contained more obstacles than the other (Map 2). For the suggested frontier detection, the percentage of successfully mapped area against the ground truth map was determined to be 97.5% for Map 1 and 98.3% for Map 2. These results indicate that the proposed method yields great results. The HC approach is the most effective of the three proposed methods for both maps in terms of the time required to explore the maps and the efficiency of navigation inside the maps.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信