{"title":"基于气动人工肌肉几何模型的作动器动力学仿真","authors":"M. Tóthová, J. Pitel’","doi":"10.1109/SISY.2013.6662577","DOIUrl":null,"url":null,"abstract":"Dynamic simulation model of the actuator with two pneumatic artificial muscles in antagonistic connection was designed and built in Matlab Simulink environment. The basis for this simulation model was dynamic model of the pneumatic actuator based on advanced geometric muscle model. The main dynamics characteristics of such actuator were obtained by model simulation, as for example muscle force change, pressure change in muscle, arm position of the actuator. Simulation results will be used in design of control system of such actuator using model reference adaptive controller.","PeriodicalId":187088,"journal":{"name":"2013 IEEE 11th International Symposium on Intelligent Systems and Informatics (SISY)","volume":"120 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Simulation of actuator dynamics based on geometric model of pneumatic artificial muscle\",\"authors\":\"M. Tóthová, J. Pitel’\",\"doi\":\"10.1109/SISY.2013.6662577\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dynamic simulation model of the actuator with two pneumatic artificial muscles in antagonistic connection was designed and built in Matlab Simulink environment. The basis for this simulation model was dynamic model of the pneumatic actuator based on advanced geometric muscle model. The main dynamics characteristics of such actuator were obtained by model simulation, as for example muscle force change, pressure change in muscle, arm position of the actuator. Simulation results will be used in design of control system of such actuator using model reference adaptive controller.\",\"PeriodicalId\":187088,\"journal\":{\"name\":\"2013 IEEE 11th International Symposium on Intelligent Systems and Informatics (SISY)\",\"volume\":\"120 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 11th International Symposium on Intelligent Systems and Informatics (SISY)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SISY.2013.6662577\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 11th International Symposium on Intelligent Systems and Informatics (SISY)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SISY.2013.6662577","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Simulation of actuator dynamics based on geometric model of pneumatic artificial muscle
Dynamic simulation model of the actuator with two pneumatic artificial muscles in antagonistic connection was designed and built in Matlab Simulink environment. The basis for this simulation model was dynamic model of the pneumatic actuator based on advanced geometric muscle model. The main dynamics characteristics of such actuator were obtained by model simulation, as for example muscle force change, pressure change in muscle, arm position of the actuator. Simulation results will be used in design of control system of such actuator using model reference adaptive controller.