基于SPICE模型的负电容finfet器件电路协同优化

Jiali Huo, Weixing Huang, Fan Zhang, Qiang Huo, Weizhuo Gan, Haoqing Xu, Huilong Zhu, H. Yin, Zhenhua Wu
{"title":"基于SPICE模型的负电容finfet器件电路协同优化","authors":"Jiali Huo, Weixing Huang, Fan Zhang, Qiang Huo, Weizhuo Gan, Haoqing Xu, Huilong Zhu, H. Yin, Zhenhua Wu","doi":"10.1109/IWAPS51164.2020.9286809","DOIUrl":null,"url":null,"abstract":"This article presents a device-circuit co-optimization on Negative Capacitance FinFETs (NC-FinFETs). A physics-based SPICE model that combines industry-standard BSIM-CMG model and Landau Khalatnikov (LK) equation is developed for the NC-FinFETs. Different ferroelectric areas (AFE) are selected to analyze the characteristics of the NC-FinFETs. The influences of work function (WF) and capacitance matching on NC-FinFETs are investigated to further optimize the DC performance of inverters. Based on the NC-FinFETs SPICE model, we simulate the transient characteristics of the ring oscillator (RO) and analyze the delay-energy characteristics of the RO in detail. At low supply voltage $(V_{DD})$ the delay of NC-FinFETs-based RO is much smaller than that of conventional FinFETs-based RO. Under the same delay, the energy consumption of NC-FinFETs-based RO is 50.4% lower than that of FinFETs-based RO. This result shows that NC-FinFETs have great advantages in low-power applications.","PeriodicalId":165983,"journal":{"name":"2020 International Workshop on Advanced Patterning Solutions (IWAPS)","volume":"151 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Device-Circuit Co-Optimization for Negative Capacitance FinFETs based on SPICE Model\",\"authors\":\"Jiali Huo, Weixing Huang, Fan Zhang, Qiang Huo, Weizhuo Gan, Haoqing Xu, Huilong Zhu, H. Yin, Zhenhua Wu\",\"doi\":\"10.1109/IWAPS51164.2020.9286809\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents a device-circuit co-optimization on Negative Capacitance FinFETs (NC-FinFETs). A physics-based SPICE model that combines industry-standard BSIM-CMG model and Landau Khalatnikov (LK) equation is developed for the NC-FinFETs. Different ferroelectric areas (AFE) are selected to analyze the characteristics of the NC-FinFETs. The influences of work function (WF) and capacitance matching on NC-FinFETs are investigated to further optimize the DC performance of inverters. Based on the NC-FinFETs SPICE model, we simulate the transient characteristics of the ring oscillator (RO) and analyze the delay-energy characteristics of the RO in detail. At low supply voltage $(V_{DD})$ the delay of NC-FinFETs-based RO is much smaller than that of conventional FinFETs-based RO. Under the same delay, the energy consumption of NC-FinFETs-based RO is 50.4% lower than that of FinFETs-based RO. This result shows that NC-FinFETs have great advantages in low-power applications.\",\"PeriodicalId\":165983,\"journal\":{\"name\":\"2020 International Workshop on Advanced Patterning Solutions (IWAPS)\",\"volume\":\"151 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Workshop on Advanced Patterning Solutions (IWAPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWAPS51164.2020.9286809\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Workshop on Advanced Patterning Solutions (IWAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWAPS51164.2020.9286809","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种负电容finfet (nc - finfet)的器件电路协同优化方法。结合行业标准BSIM-CMG模型和Landau Khalatnikov (LK)方程,开发了一种基于物理的nc - finfet SPICE模型。选择不同的铁电区(AFE)来分析nc - finfet的特性。为了进一步优化逆变器的直流性能,研究了功函数(WF)和电容匹配对nc - finfet的影响。基于nc - finfet SPICE模型,模拟了环形振荡器(RO)的瞬态特性,详细分析了RO的延迟-能量特性。在低电源电压$(V_{DD})$的情况下,nc - finfet基RO的延迟比传统finfet基RO的延迟要小得多。在相同时延下,nc - finfet的RO能耗比finfet的RO能耗低50.4%。这一结果表明nc - finfet在低功耗应用中具有很大的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Device-Circuit Co-Optimization for Negative Capacitance FinFETs based on SPICE Model
This article presents a device-circuit co-optimization on Negative Capacitance FinFETs (NC-FinFETs). A physics-based SPICE model that combines industry-standard BSIM-CMG model and Landau Khalatnikov (LK) equation is developed for the NC-FinFETs. Different ferroelectric areas (AFE) are selected to analyze the characteristics of the NC-FinFETs. The influences of work function (WF) and capacitance matching on NC-FinFETs are investigated to further optimize the DC performance of inverters. Based on the NC-FinFETs SPICE model, we simulate the transient characteristics of the ring oscillator (RO) and analyze the delay-energy characteristics of the RO in detail. At low supply voltage $(V_{DD})$ the delay of NC-FinFETs-based RO is much smaller than that of conventional FinFETs-based RO. Under the same delay, the energy consumption of NC-FinFETs-based RO is 50.4% lower than that of FinFETs-based RO. This result shows that NC-FinFETs have great advantages in low-power applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信