Jiali Huo, Weixing Huang, Fan Zhang, Qiang Huo, Weizhuo Gan, Haoqing Xu, Huilong Zhu, H. Yin, Zhenhua Wu
{"title":"基于SPICE模型的负电容finfet器件电路协同优化","authors":"Jiali Huo, Weixing Huang, Fan Zhang, Qiang Huo, Weizhuo Gan, Haoqing Xu, Huilong Zhu, H. Yin, Zhenhua Wu","doi":"10.1109/IWAPS51164.2020.9286809","DOIUrl":null,"url":null,"abstract":"This article presents a device-circuit co-optimization on Negative Capacitance FinFETs (NC-FinFETs). A physics-based SPICE model that combines industry-standard BSIM-CMG model and Landau Khalatnikov (LK) equation is developed for the NC-FinFETs. Different ferroelectric areas (AFE) are selected to analyze the characteristics of the NC-FinFETs. The influences of work function (WF) and capacitance matching on NC-FinFETs are investigated to further optimize the DC performance of inverters. Based on the NC-FinFETs SPICE model, we simulate the transient characteristics of the ring oscillator (RO) and analyze the delay-energy characteristics of the RO in detail. At low supply voltage $(V_{DD})$ the delay of NC-FinFETs-based RO is much smaller than that of conventional FinFETs-based RO. Under the same delay, the energy consumption of NC-FinFETs-based RO is 50.4% lower than that of FinFETs-based RO. This result shows that NC-FinFETs have great advantages in low-power applications.","PeriodicalId":165983,"journal":{"name":"2020 International Workshop on Advanced Patterning Solutions (IWAPS)","volume":"151 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Device-Circuit Co-Optimization for Negative Capacitance FinFETs based on SPICE Model\",\"authors\":\"Jiali Huo, Weixing Huang, Fan Zhang, Qiang Huo, Weizhuo Gan, Haoqing Xu, Huilong Zhu, H. Yin, Zhenhua Wu\",\"doi\":\"10.1109/IWAPS51164.2020.9286809\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents a device-circuit co-optimization on Negative Capacitance FinFETs (NC-FinFETs). A physics-based SPICE model that combines industry-standard BSIM-CMG model and Landau Khalatnikov (LK) equation is developed for the NC-FinFETs. Different ferroelectric areas (AFE) are selected to analyze the characteristics of the NC-FinFETs. The influences of work function (WF) and capacitance matching on NC-FinFETs are investigated to further optimize the DC performance of inverters. Based on the NC-FinFETs SPICE model, we simulate the transient characteristics of the ring oscillator (RO) and analyze the delay-energy characteristics of the RO in detail. At low supply voltage $(V_{DD})$ the delay of NC-FinFETs-based RO is much smaller than that of conventional FinFETs-based RO. Under the same delay, the energy consumption of NC-FinFETs-based RO is 50.4% lower than that of FinFETs-based RO. This result shows that NC-FinFETs have great advantages in low-power applications.\",\"PeriodicalId\":165983,\"journal\":{\"name\":\"2020 International Workshop on Advanced Patterning Solutions (IWAPS)\",\"volume\":\"151 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Workshop on Advanced Patterning Solutions (IWAPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWAPS51164.2020.9286809\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Workshop on Advanced Patterning Solutions (IWAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWAPS51164.2020.9286809","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Device-Circuit Co-Optimization for Negative Capacitance FinFETs based on SPICE Model
This article presents a device-circuit co-optimization on Negative Capacitance FinFETs (NC-FinFETs). A physics-based SPICE model that combines industry-standard BSIM-CMG model and Landau Khalatnikov (LK) equation is developed for the NC-FinFETs. Different ferroelectric areas (AFE) are selected to analyze the characteristics of the NC-FinFETs. The influences of work function (WF) and capacitance matching on NC-FinFETs are investigated to further optimize the DC performance of inverters. Based on the NC-FinFETs SPICE model, we simulate the transient characteristics of the ring oscillator (RO) and analyze the delay-energy characteristics of the RO in detail. At low supply voltage $(V_{DD})$ the delay of NC-FinFETs-based RO is much smaller than that of conventional FinFETs-based RO. Under the same delay, the energy consumption of NC-FinFETs-based RO is 50.4% lower than that of FinFETs-based RO. This result shows that NC-FinFETs have great advantages in low-power applications.