基于二进制Bat算法的入侵检测智能特征选择方法

A. Enache, V. Sgârciu, Alina Petrescu-Nita
{"title":"基于二进制Bat算法的入侵检测智能特征选择方法","authors":"A. Enache, V. Sgârciu, Alina Petrescu-Nita","doi":"10.1109/SACI.2015.7208259","DOIUrl":null,"url":null,"abstract":"The multitude of hardware and software applications generate a lot of data and burden security solutions that must acquire informations from all these heterogenous systems. Adding the current dynamic and complex cyber threats in this context, make it clear that new security solutions are needed. In this paper we propose a wrapper feature selection approach that combines two machine learning algorithms with an improved version of the Binary Bat Algorithm. Tests on the NSL-KDD dataset empirically prove that our proposed method can reduce the number of features with almost 60% and obtains good results in terms of attack detection rate and false alarm rate, even for unknown attacks.","PeriodicalId":312683,"journal":{"name":"2015 IEEE 10th Jubilee International Symposium on Applied Computational Intelligence and Informatics","volume":"241 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Intelligent feature selection method rooted in Binary Bat Algorithm for intrusion detection\",\"authors\":\"A. Enache, V. Sgârciu, Alina Petrescu-Nita\",\"doi\":\"10.1109/SACI.2015.7208259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The multitude of hardware and software applications generate a lot of data and burden security solutions that must acquire informations from all these heterogenous systems. Adding the current dynamic and complex cyber threats in this context, make it clear that new security solutions are needed. In this paper we propose a wrapper feature selection approach that combines two machine learning algorithms with an improved version of the Binary Bat Algorithm. Tests on the NSL-KDD dataset empirically prove that our proposed method can reduce the number of features with almost 60% and obtains good results in terms of attack detection rate and false alarm rate, even for unknown attacks.\",\"PeriodicalId\":312683,\"journal\":{\"name\":\"2015 IEEE 10th Jubilee International Symposium on Applied Computational Intelligence and Informatics\",\"volume\":\"241 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 10th Jubilee International Symposium on Applied Computational Intelligence and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SACI.2015.7208259\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 10th Jubilee International Symposium on Applied Computational Intelligence and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SACI.2015.7208259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

大量的硬件和软件应用程序会生成大量的数据,并给必须从所有这些异构系统获取信息的安全解决方案带来负担。在此背景下添加当前动态和复杂的网络威胁,明确需要新的安全解决方案。在本文中,我们提出了一种包装器特征选择方法,该方法结合了两种机器学习算法和改进版本的二进制Bat算法。在NSL-KDD数据集上的测试经验证明,我们提出的方法可以将特征数量减少近60%,并且在攻击检测率和虚警率方面取得了良好的效果,即使对于未知攻击也是如此。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intelligent feature selection method rooted in Binary Bat Algorithm for intrusion detection
The multitude of hardware and software applications generate a lot of data and burden security solutions that must acquire informations from all these heterogenous systems. Adding the current dynamic and complex cyber threats in this context, make it clear that new security solutions are needed. In this paper we propose a wrapper feature selection approach that combines two machine learning algorithms with an improved version of the Binary Bat Algorithm. Tests on the NSL-KDD dataset empirically prove that our proposed method can reduce the number of features with almost 60% and obtains good results in terms of attack detection rate and false alarm rate, even for unknown attacks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信