正在进行的工作:MLGOPerf:一个ML引导内联优化性能

Amir H. Ashouri, Mostafa Elhoushi, Yu-Wei Hua, Xiang Wang, M. A. Manzoor, Bryan Chan, Yaoqing Gao
{"title":"正在进行的工作:MLGOPerf:一个ML引导内联优化性能","authors":"Amir H. Ashouri, Mostafa Elhoushi, Yu-Wei Hua, Xiang Wang, M. A. Manzoor, Bryan Chan, Yaoqing Gao","doi":"10.1109/CASES55004.2022.00008","DOIUrl":null,"url":null,"abstract":"This paper presents MLGOPerf; the first end-to-end framework capable of optimizing performance using LLVM’s ML-Inliner. It employs a secondary ML model to generate rewards used for training a retargeted Reinforcement learning agent, previously used as the primary model by MLGO. It does so by predicting the post-inlining speedup of a function under analysis and it enables a fast training framework for the primary model which otherwise wouldn’t be practical. The experimental results show MLGOPerf is able to gain up to 1.8% with respect to LLVM’s optimization at O3 when trained for performance on SPEC CPU2006. Furthermore, the proposed approach provides up to 26% increased opportunities to autotune code regions for our benchmarks which can be translated into an additional 3.7% speedup value.","PeriodicalId":331181,"journal":{"name":"2022 International Conference on Compilers, Architecture, and Synthesis for Embedded Systems (CASES)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Work-in-Progress: MLGOPerf: An ML Guided Inliner to Optimize Performance\",\"authors\":\"Amir H. Ashouri, Mostafa Elhoushi, Yu-Wei Hua, Xiang Wang, M. A. Manzoor, Bryan Chan, Yaoqing Gao\",\"doi\":\"10.1109/CASES55004.2022.00008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents MLGOPerf; the first end-to-end framework capable of optimizing performance using LLVM’s ML-Inliner. It employs a secondary ML model to generate rewards used for training a retargeted Reinforcement learning agent, previously used as the primary model by MLGO. It does so by predicting the post-inlining speedup of a function under analysis and it enables a fast training framework for the primary model which otherwise wouldn’t be practical. The experimental results show MLGOPerf is able to gain up to 1.8% with respect to LLVM’s optimization at O3 when trained for performance on SPEC CPU2006. Furthermore, the proposed approach provides up to 26% increased opportunities to autotune code regions for our benchmarks which can be translated into an additional 3.7% speedup value.\",\"PeriodicalId\":331181,\"journal\":{\"name\":\"2022 International Conference on Compilers, Architecture, and Synthesis for Embedded Systems (CASES)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Compilers, Architecture, and Synthesis for Embedded Systems (CASES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CASES55004.2022.00008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Compilers, Architecture, and Synthesis for Embedded Systems (CASES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CASES55004.2022.00008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文介绍了MLGOPerf;第一个能够使用LLVM的ml内联优化性能的端到端框架。它使用一个辅助ML模型来生成奖励,用于训练一个重新定位的强化学习代理,之前被MLGO用作主要模型。它通过预测在分析中的函数的内联后加速来实现这一点,它为主模型提供了一个快速的训练框架,否则这是不切实际的。实验结果表明,当在SPEC CPU2006上进行性能训练时,MLGOPerf能够比LLVM在O3上的优化提高1.8%。此外,所提出的方法为我们的基准测试提供了高达26%的自动调整代码区域的机会,这可以转化为3.7%的额外加速值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Work-in-Progress: MLGOPerf: An ML Guided Inliner to Optimize Performance
This paper presents MLGOPerf; the first end-to-end framework capable of optimizing performance using LLVM’s ML-Inliner. It employs a secondary ML model to generate rewards used for training a retargeted Reinforcement learning agent, previously used as the primary model by MLGO. It does so by predicting the post-inlining speedup of a function under analysis and it enables a fast training framework for the primary model which otherwise wouldn’t be practical. The experimental results show MLGOPerf is able to gain up to 1.8% with respect to LLVM’s optimization at O3 when trained for performance on SPEC CPU2006. Furthermore, the proposed approach provides up to 26% increased opportunities to autotune code regions for our benchmarks which can be translated into an additional 3.7% speedup value.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信