Longcheng Huang, Jifei Ye, Sai Li, Lan Li, Diankai Wang
{"title":"多次脉冲激光辐照对硅电池电阻的影响","authors":"Longcheng Huang, Jifei Ye, Sai Li, Lan Li, Diankai Wang","doi":"10.1117/12.2656268","DOIUrl":null,"url":null,"abstract":"Laser as a high energy density light source and silicon cell as a widely used photoelectric conversion element, the interaction between the two has become a research hotspot in wireless energy transmission and semiconductor material damage. At present, the experimental and theoretical research mainly focuses on the damage threshold and morphology, electrical output characteristics and action mechanism. The resistance of the silicon cell affecting electrical output was mainly qualitative analysis, but few quantitative studies. Different degrees of damage were simulated though pulsed laser irradiation in different positions of the silicon cell. The parallel resistance and series resistance of the silicon cell were estimated by linear fitting at V0 and I0 of IV curve, and the variation of the resistances was quantitatively obtained under different degrees damage. The results show that the damage induced by pulsed laser irradiation is obvious melting ablation and the damage is irreversible when the optical power density is 3.3×108W / cm2 , one pulse irradiation damage is equivalent to the resistances of 67 in parallel and 189 m in series for silicon cell, the output voltage decreases approximately linearly with the increase of irradiation times and the output voltage is about half of the initial voltage after 6 times irradiation. In addition, the output voltage was rapidly increased to a peak with the loading of pulsed laser, which is almost independent of the damage of the silicon cell.","PeriodicalId":217394,"journal":{"name":"International Symposium on Laser Interaction with Matter","volume":"207 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of multiple pulsed laser irradiation on resistance of silicon cells\",\"authors\":\"Longcheng Huang, Jifei Ye, Sai Li, Lan Li, Diankai Wang\",\"doi\":\"10.1117/12.2656268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Laser as a high energy density light source and silicon cell as a widely used photoelectric conversion element, the interaction between the two has become a research hotspot in wireless energy transmission and semiconductor material damage. At present, the experimental and theoretical research mainly focuses on the damage threshold and morphology, electrical output characteristics and action mechanism. The resistance of the silicon cell affecting electrical output was mainly qualitative analysis, but few quantitative studies. Different degrees of damage were simulated though pulsed laser irradiation in different positions of the silicon cell. The parallel resistance and series resistance of the silicon cell were estimated by linear fitting at V0 and I0 of IV curve, and the variation of the resistances was quantitatively obtained under different degrees damage. The results show that the damage induced by pulsed laser irradiation is obvious melting ablation and the damage is irreversible when the optical power density is 3.3×108W / cm2 , one pulse irradiation damage is equivalent to the resistances of 67 in parallel and 189 m in series for silicon cell, the output voltage decreases approximately linearly with the increase of irradiation times and the output voltage is about half of the initial voltage after 6 times irradiation. In addition, the output voltage was rapidly increased to a peak with the loading of pulsed laser, which is almost independent of the damage of the silicon cell.\",\"PeriodicalId\":217394,\"journal\":{\"name\":\"International Symposium on Laser Interaction with Matter\",\"volume\":\"207 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Laser Interaction with Matter\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2656268\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Laser Interaction with Matter","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2656268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effect of multiple pulsed laser irradiation on resistance of silicon cells
Laser as a high energy density light source and silicon cell as a widely used photoelectric conversion element, the interaction between the two has become a research hotspot in wireless energy transmission and semiconductor material damage. At present, the experimental and theoretical research mainly focuses on the damage threshold and morphology, electrical output characteristics and action mechanism. The resistance of the silicon cell affecting electrical output was mainly qualitative analysis, but few quantitative studies. Different degrees of damage were simulated though pulsed laser irradiation in different positions of the silicon cell. The parallel resistance and series resistance of the silicon cell were estimated by linear fitting at V0 and I0 of IV curve, and the variation of the resistances was quantitatively obtained under different degrees damage. The results show that the damage induced by pulsed laser irradiation is obvious melting ablation and the damage is irreversible when the optical power density is 3.3×108W / cm2 , one pulse irradiation damage is equivalent to the resistances of 67 in parallel and 189 m in series for silicon cell, the output voltage decreases approximately linearly with the increase of irradiation times and the output voltage is about half of the initial voltage after 6 times irradiation. In addition, the output voltage was rapidly increased to a peak with the loading of pulsed laser, which is almost independent of the damage of the silicon cell.