{"title":"一种新颖而有效的电源板布局优化方法","authors":"T. Yu, Martin D. F. Wong","doi":"10.1109/ISQED.2013.6523604","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel and efficient iterative method for pad placement optimization of power grid with flip chip technology. Power grid with optimized pad placement has less IR-drop values. We develop a new method to calculate new locations of all pads. Placing pads at the new locations reduces local IR-drop values. In order to reduce global IR-drop values, we develop a graph-based strategy to decide which pads are moved to the new locations. After each movement of the pads, a static IR-drop analysis is performed. We develop multigrid accelerated modified Simulated Annealing method (MG_SA) and compare it with the proposed method on a set of test cases. Experimental results show that the proposed method outperforms MG_SA with similar or less IR-drop values and much less runtime.","PeriodicalId":127115,"journal":{"name":"International Symposium on Quality Electronic Design (ISQED)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A novel and efficient method for power pad placement optimization\",\"authors\":\"T. Yu, Martin D. F. Wong\",\"doi\":\"10.1109/ISQED.2013.6523604\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a novel and efficient iterative method for pad placement optimization of power grid with flip chip technology. Power grid with optimized pad placement has less IR-drop values. We develop a new method to calculate new locations of all pads. Placing pads at the new locations reduces local IR-drop values. In order to reduce global IR-drop values, we develop a graph-based strategy to decide which pads are moved to the new locations. After each movement of the pads, a static IR-drop analysis is performed. We develop multigrid accelerated modified Simulated Annealing method (MG_SA) and compare it with the proposed method on a set of test cases. Experimental results show that the proposed method outperforms MG_SA with similar or less IR-drop values and much less runtime.\",\"PeriodicalId\":127115,\"journal\":{\"name\":\"International Symposium on Quality Electronic Design (ISQED)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Quality Electronic Design (ISQED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISQED.2013.6523604\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Quality Electronic Design (ISQED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISQED.2013.6523604","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A novel and efficient method for power pad placement optimization
In this paper, we propose a novel and efficient iterative method for pad placement optimization of power grid with flip chip technology. Power grid with optimized pad placement has less IR-drop values. We develop a new method to calculate new locations of all pads. Placing pads at the new locations reduces local IR-drop values. In order to reduce global IR-drop values, we develop a graph-based strategy to decide which pads are moved to the new locations. After each movement of the pads, a static IR-drop analysis is performed. We develop multigrid accelerated modified Simulated Annealing method (MG_SA) and compare it with the proposed method on a set of test cases. Experimental results show that the proposed method outperforms MG_SA with similar or less IR-drop values and much less runtime.