基于经验模态分解和双向LSTM结构的手指MI-EEG信号解码

Tat’y Mwata-Velu, J. Ruiz-Pinales, J. Aviña-Cervantes, J. González-Barbosa, J. Contreras-Hernandez
{"title":"基于经验模态分解和双向LSTM结构的手指MI-EEG信号解码","authors":"Tat’y Mwata-Velu, J. Ruiz-Pinales, J. Aviña-Cervantes, J. González-Barbosa, J. Contreras-Hernandez","doi":"10.15377/2409-5761.2022.09.3","DOIUrl":null,"url":null,"abstract":"Brain-Computer Interface (BCI) paradigms based on Motor Imagery Electroencephalogram (MI-EEG) signals have been developed because the related signals can be generated voluntarily to control further applications. Researches using strong and stout limbs MI-EEG signals reported performing significant classification rates for BCI applied systems. However, MI-EEG signals produced by imagined movements of small limbs present a real classification challenge to be effectively used in BCI systems. It is due to a reduced signal level and increased noisy distorted effects. This study aims to decode individual right-hand fingers’ imagined movements for BCI applications, using MI-EEG signals from C3, Cz, P3, and Pz channels. For this purpose, the Empirical Mode Decomposition (EMD) preprocesses the non-stationary and non-linear EEG signals to finally use a Bidirectional Long Short-Term Memory (BiLSTM) to classify corresponding feature sequences. An average accuracy of 98.8 % was achieved for ring-finger movements decoding using k-fold cross-validation on a public dataset (Scientific-Data). The obtained results support that the proposed framework can be used for BCI control applications.","PeriodicalId":335387,"journal":{"name":"Journal of Advances in Applied & Computational Mathematics","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Empirical Mode Decomposition and a Bidirectional LSTM Architecture Used to Decode Individual Finger MI-EEG Signals\",\"authors\":\"Tat’y Mwata-Velu, J. Ruiz-Pinales, J. Aviña-Cervantes, J. González-Barbosa, J. Contreras-Hernandez\",\"doi\":\"10.15377/2409-5761.2022.09.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Brain-Computer Interface (BCI) paradigms based on Motor Imagery Electroencephalogram (MI-EEG) signals have been developed because the related signals can be generated voluntarily to control further applications. Researches using strong and stout limbs MI-EEG signals reported performing significant classification rates for BCI applied systems. However, MI-EEG signals produced by imagined movements of small limbs present a real classification challenge to be effectively used in BCI systems. It is due to a reduced signal level and increased noisy distorted effects. This study aims to decode individual right-hand fingers’ imagined movements for BCI applications, using MI-EEG signals from C3, Cz, P3, and Pz channels. For this purpose, the Empirical Mode Decomposition (EMD) preprocesses the non-stationary and non-linear EEG signals to finally use a Bidirectional Long Short-Term Memory (BiLSTM) to classify corresponding feature sequences. An average accuracy of 98.8 % was achieved for ring-finger movements decoding using k-fold cross-validation on a public dataset (Scientific-Data). The obtained results support that the proposed framework can be used for BCI control applications.\",\"PeriodicalId\":335387,\"journal\":{\"name\":\"Journal of Advances in Applied & Computational Mathematics\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advances in Applied & Computational Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15377/2409-5761.2022.09.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advances in Applied & Computational Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15377/2409-5761.2022.09.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

基于运动图像脑电图(MI-EEG)信号的脑机接口(BCI)范式之所以得到发展,是因为相关信号可以自发地产生以控制进一步的应用。使用强壮和粗壮肢体MI-EEG信号的研究报告了BCI应用系统的显著分类率。然而,由想象的小肢体运动产生的MI-EEG信号对BCI系统的有效使用提出了真正的分类挑战。这是由于降低了信号电平和增加了噪声失真的影响。本研究旨在利用来自C3、Cz、P3和Pz通道的MI-EEG信号,解码个体右手手指的想象运动,用于脑机接口应用。为此,经验模态分解(EMD)对非平稳和非线性脑电信号进行预处理,最后利用双向长短期记忆(BiLSTM)对相应的特征序列进行分类。在公共数据集(Scientific-Data)上使用k-fold交叉验证,无名指动作解码的平均准确率达到98.8%。实验结果表明,该框架可用于脑机接口控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Empirical Mode Decomposition and a Bidirectional LSTM Architecture Used to Decode Individual Finger MI-EEG Signals
Brain-Computer Interface (BCI) paradigms based on Motor Imagery Electroencephalogram (MI-EEG) signals have been developed because the related signals can be generated voluntarily to control further applications. Researches using strong and stout limbs MI-EEG signals reported performing significant classification rates for BCI applied systems. However, MI-EEG signals produced by imagined movements of small limbs present a real classification challenge to be effectively used in BCI systems. It is due to a reduced signal level and increased noisy distorted effects. This study aims to decode individual right-hand fingers’ imagined movements for BCI applications, using MI-EEG signals from C3, Cz, P3, and Pz channels. For this purpose, the Empirical Mode Decomposition (EMD) preprocesses the non-stationary and non-linear EEG signals to finally use a Bidirectional Long Short-Term Memory (BiLSTM) to classify corresponding feature sequences. An average accuracy of 98.8 % was achieved for ring-finger movements decoding using k-fold cross-validation on a public dataset (Scientific-Data). The obtained results support that the proposed framework can be used for BCI control applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信