Tat’y Mwata-Velu, J. Ruiz-Pinales, J. Aviña-Cervantes, J. González-Barbosa, J. Contreras-Hernandez
{"title":"基于经验模态分解和双向LSTM结构的手指MI-EEG信号解码","authors":"Tat’y Mwata-Velu, J. Ruiz-Pinales, J. Aviña-Cervantes, J. González-Barbosa, J. Contreras-Hernandez","doi":"10.15377/2409-5761.2022.09.3","DOIUrl":null,"url":null,"abstract":"Brain-Computer Interface (BCI) paradigms based on Motor Imagery Electroencephalogram (MI-EEG) signals have been developed because the related signals can be generated voluntarily to control further applications. Researches using strong and stout limbs MI-EEG signals reported performing significant classification rates for BCI applied systems. However, MI-EEG signals produced by imagined movements of small limbs present a real classification challenge to be effectively used in BCI systems. It is due to a reduced signal level and increased noisy distorted effects. This study aims to decode individual right-hand fingers’ imagined movements for BCI applications, using MI-EEG signals from C3, Cz, P3, and Pz channels. For this purpose, the Empirical Mode Decomposition (EMD) preprocesses the non-stationary and non-linear EEG signals to finally use a Bidirectional Long Short-Term Memory (BiLSTM) to classify corresponding feature sequences. An average accuracy of 98.8 % was achieved for ring-finger movements decoding using k-fold cross-validation on a public dataset (Scientific-Data). The obtained results support that the proposed framework can be used for BCI control applications.","PeriodicalId":335387,"journal":{"name":"Journal of Advances in Applied & Computational Mathematics","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Empirical Mode Decomposition and a Bidirectional LSTM Architecture Used to Decode Individual Finger MI-EEG Signals\",\"authors\":\"Tat’y Mwata-Velu, J. Ruiz-Pinales, J. Aviña-Cervantes, J. González-Barbosa, J. Contreras-Hernandez\",\"doi\":\"10.15377/2409-5761.2022.09.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Brain-Computer Interface (BCI) paradigms based on Motor Imagery Electroencephalogram (MI-EEG) signals have been developed because the related signals can be generated voluntarily to control further applications. Researches using strong and stout limbs MI-EEG signals reported performing significant classification rates for BCI applied systems. However, MI-EEG signals produced by imagined movements of small limbs present a real classification challenge to be effectively used in BCI systems. It is due to a reduced signal level and increased noisy distorted effects. This study aims to decode individual right-hand fingers’ imagined movements for BCI applications, using MI-EEG signals from C3, Cz, P3, and Pz channels. For this purpose, the Empirical Mode Decomposition (EMD) preprocesses the non-stationary and non-linear EEG signals to finally use a Bidirectional Long Short-Term Memory (BiLSTM) to classify corresponding feature sequences. An average accuracy of 98.8 % was achieved for ring-finger movements decoding using k-fold cross-validation on a public dataset (Scientific-Data). The obtained results support that the proposed framework can be used for BCI control applications.\",\"PeriodicalId\":335387,\"journal\":{\"name\":\"Journal of Advances in Applied & Computational Mathematics\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advances in Applied & Computational Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15377/2409-5761.2022.09.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advances in Applied & Computational Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15377/2409-5761.2022.09.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Empirical Mode Decomposition and a Bidirectional LSTM Architecture Used to Decode Individual Finger MI-EEG Signals
Brain-Computer Interface (BCI) paradigms based on Motor Imagery Electroencephalogram (MI-EEG) signals have been developed because the related signals can be generated voluntarily to control further applications. Researches using strong and stout limbs MI-EEG signals reported performing significant classification rates for BCI applied systems. However, MI-EEG signals produced by imagined movements of small limbs present a real classification challenge to be effectively used in BCI systems. It is due to a reduced signal level and increased noisy distorted effects. This study aims to decode individual right-hand fingers’ imagined movements for BCI applications, using MI-EEG signals from C3, Cz, P3, and Pz channels. For this purpose, the Empirical Mode Decomposition (EMD) preprocesses the non-stationary and non-linear EEG signals to finally use a Bidirectional Long Short-Term Memory (BiLSTM) to classify corresponding feature sequences. An average accuracy of 98.8 % was achieved for ring-finger movements decoding using k-fold cross-validation on a public dataset (Scientific-Data). The obtained results support that the proposed framework can be used for BCI control applications.