人脸识别:线性与非线性降维方法的比较研究

Bouzalmat Anissa, Belghini Naouar, Zarghili Arsalane, Kharroubi Jamal
{"title":"人脸识别:线性与非线性降维方法的比较研究","authors":"Bouzalmat Anissa, Belghini Naouar, Zarghili Arsalane, Kharroubi Jamal","doi":"10.1109/EITECH.2015.7162932","DOIUrl":null,"url":null,"abstract":"In the field of face recognition, the major challenge that encountered classification algorithms, is to deal with the high dimensionality of the space representing data faces. Many methods have been used to solve the issue, our focus, in this paper, is to compare the efficiency (in the term of complexity and recognition rate) of linear and non linear dimensionality reduction methods. We study the influence of high and low dimensionality of features using PCA, LDA, ICA and Sparse Random Projection. Experiments show that projecting the data onto a lower-dimensional subspace using non linear method give a high face recognition rate.","PeriodicalId":405923,"journal":{"name":"2015 International Conference on Electrical and Information Technologies (ICEIT)","volume":"117 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Face recognition: Comparative study between linear and non linear dimensionality reduction methods\",\"authors\":\"Bouzalmat Anissa, Belghini Naouar, Zarghili Arsalane, Kharroubi Jamal\",\"doi\":\"10.1109/EITECH.2015.7162932\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the field of face recognition, the major challenge that encountered classification algorithms, is to deal with the high dimensionality of the space representing data faces. Many methods have been used to solve the issue, our focus, in this paper, is to compare the efficiency (in the term of complexity and recognition rate) of linear and non linear dimensionality reduction methods. We study the influence of high and low dimensionality of features using PCA, LDA, ICA and Sparse Random Projection. Experiments show that projecting the data onto a lower-dimensional subspace using non linear method give a high face recognition rate.\",\"PeriodicalId\":405923,\"journal\":{\"name\":\"2015 International Conference on Electrical and Information Technologies (ICEIT)\",\"volume\":\"117 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Electrical and Information Technologies (ICEIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EITECH.2015.7162932\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Electrical and Information Technologies (ICEIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EITECH.2015.7162932","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在人脸识别领域,分类算法遇到的主要挑战是处理数据人脸表示空间的高维性。目前已有许多方法用于解决这一问题,本文的重点是比较线性和非线性降维方法的效率(在复杂度和识别率方面)。利用PCA、LDA、ICA和稀疏随机投影等方法研究了特征的高维和低维的影响。实验表明,利用非线性方法将数据投影到低维子空间上,可以获得较高的人脸识别率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Face recognition: Comparative study between linear and non linear dimensionality reduction methods
In the field of face recognition, the major challenge that encountered classification algorithms, is to deal with the high dimensionality of the space representing data faces. Many methods have been used to solve the issue, our focus, in this paper, is to compare the efficiency (in the term of complexity and recognition rate) of linear and non linear dimensionality reduction methods. We study the influence of high and low dimensionality of features using PCA, LDA, ICA and Sparse Random Projection. Experiments show that projecting the data onto a lower-dimensional subspace using non linear method give a high face recognition rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信