容错船载MVDC架构

R. Cuzner, Danial Esmaili
{"title":"容错船载MVDC架构","authors":"R. Cuzner, Danial Esmaili","doi":"10.1109/ESARS.2015.7101536","DOIUrl":null,"url":null,"abstract":"Medium Voltage DC (MVDC) architectures are identified from the literature search that are suitable for a highly survivable 20kVdc shipboard Integrated Power System (IPS). “Breaker-based” architectures enable fast fault isolation through the use of Solid State Protective Device (SSPD) technology. “Breaker-less” architectures require based generator power converter and Solid State Transformer (SST) interfaces that can fold back outputs and coordinate with no load switches to isolate faults. Estimated size/weights and survivability of various “breaker-based” and “breaker-less topologies are compared. “Breaker-Less”, Current Source Converter (CSC) based architectures have the highest power density but at the cost of lower survivability. Expanding the role of galvanically isolating converters within the system (i.e. SSTs) increases power density and survivability.","PeriodicalId":287492,"journal":{"name":"2015 International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles (ESARS)","volume":"149 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":"{\"title\":\"Fault tolerant shipboard MVDC architectures\",\"authors\":\"R. Cuzner, Danial Esmaili\",\"doi\":\"10.1109/ESARS.2015.7101536\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Medium Voltage DC (MVDC) architectures are identified from the literature search that are suitable for a highly survivable 20kVdc shipboard Integrated Power System (IPS). “Breaker-based” architectures enable fast fault isolation through the use of Solid State Protective Device (SSPD) technology. “Breaker-less” architectures require based generator power converter and Solid State Transformer (SST) interfaces that can fold back outputs and coordinate with no load switches to isolate faults. Estimated size/weights and survivability of various “breaker-based” and “breaker-less topologies are compared. “Breaker-Less”, Current Source Converter (CSC) based architectures have the highest power density but at the cost of lower survivability. Expanding the role of galvanically isolating converters within the system (i.e. SSTs) increases power density and survivability.\",\"PeriodicalId\":287492,\"journal\":{\"name\":\"2015 International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles (ESARS)\",\"volume\":\"149 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"40\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles (ESARS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESARS.2015.7101536\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles (ESARS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESARS.2015.7101536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

摘要

从文献检索中确定了中压直流(MVDC)架构,适用于高生存能力的20kVdc船载集成电源系统(IPS)。“基于断路器”的架构通过使用固态保护器件(SSPD)技术实现快速故障隔离。“无断路器”架构需要基于发电机电源转换器和固态变压器(SST)的接口,这些接口可以折叠输出并与无负载开关协调以隔离故障。对各种“基于断点”和“无断点”拓扑的估计大小/权重和生存能力进行了比较。基于“无断路器”的电流源变换器(CSC)架构具有最高的功率密度,但以较低的生存能力为代价。扩大电隔离转换器在系统中的作用(即SSTs)可以提高功率密度和生存能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fault tolerant shipboard MVDC architectures
Medium Voltage DC (MVDC) architectures are identified from the literature search that are suitable for a highly survivable 20kVdc shipboard Integrated Power System (IPS). “Breaker-based” architectures enable fast fault isolation through the use of Solid State Protective Device (SSPD) technology. “Breaker-less” architectures require based generator power converter and Solid State Transformer (SST) interfaces that can fold back outputs and coordinate with no load switches to isolate faults. Estimated size/weights and survivability of various “breaker-based” and “breaker-less topologies are compared. “Breaker-Less”, Current Source Converter (CSC) based architectures have the highest power density but at the cost of lower survivability. Expanding the role of galvanically isolating converters within the system (i.e. SSTs) increases power density and survivability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信