通过非精确和近似算术电路进行节能数字设计

Vincent Camus, Jeremy Schlachter, C. Enz
{"title":"通过非精确和近似算术电路进行节能数字设计","authors":"Vincent Camus, Jeremy Schlachter, C. Enz","doi":"10.1109/NEWCAS.2015.7182028","DOIUrl":null,"url":null,"abstract":"Inexact and approximate circuit design is a promising approach to improve performance and energy efficiency in technology-scaled and low-power digital systems. Such strategy is suitable for error tolerant applications involving perceptive or statistical outputs. This paper reviews two established techniques applicable to arithmetic units: circuit pruning and carry speculation. A critical comparative study is carried out considering several error metrics.","PeriodicalId":404655,"journal":{"name":"2015 IEEE 13th International New Circuits and Systems Conference (NEWCAS)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Energy-efficient digital design through inexact and approximate arithmetic circuits\",\"authors\":\"Vincent Camus, Jeremy Schlachter, C. Enz\",\"doi\":\"10.1109/NEWCAS.2015.7182028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inexact and approximate circuit design is a promising approach to improve performance and energy efficiency in technology-scaled and low-power digital systems. Such strategy is suitable for error tolerant applications involving perceptive or statistical outputs. This paper reviews two established techniques applicable to arithmetic units: circuit pruning and carry speculation. A critical comparative study is carried out considering several error metrics.\",\"PeriodicalId\":404655,\"journal\":{\"name\":\"2015 IEEE 13th International New Circuits and Systems Conference (NEWCAS)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 13th International New Circuits and Systems Conference (NEWCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEWCAS.2015.7182028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 13th International New Circuits and Systems Conference (NEWCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEWCAS.2015.7182028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

在技术规模和低功耗的数字系统中,不精确和近似电路设计是提高性能和能源效率的一种很有前途的方法。这种策略适用于涉及感知输出或统计输出的容错应用程序。本文综述了两种已建立的适用于算术单元的技术:电路剪枝和进位推测。一个关键的比较研究进行了考虑几个误差指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Energy-efficient digital design through inexact and approximate arithmetic circuits
Inexact and approximate circuit design is a promising approach to improve performance and energy efficiency in technology-scaled and low-power digital systems. Such strategy is suitable for error tolerant applications involving perceptive or statistical outputs. This paper reviews two established techniques applicable to arithmetic units: circuit pruning and carry speculation. A critical comparative study is carried out considering several error metrics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信