{"title":"通过非精确和近似算术电路进行节能数字设计","authors":"Vincent Camus, Jeremy Schlachter, C. Enz","doi":"10.1109/NEWCAS.2015.7182028","DOIUrl":null,"url":null,"abstract":"Inexact and approximate circuit design is a promising approach to improve performance and energy efficiency in technology-scaled and low-power digital systems. Such strategy is suitable for error tolerant applications involving perceptive or statistical outputs. This paper reviews two established techniques applicable to arithmetic units: circuit pruning and carry speculation. A critical comparative study is carried out considering several error metrics.","PeriodicalId":404655,"journal":{"name":"2015 IEEE 13th International New Circuits and Systems Conference (NEWCAS)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Energy-efficient digital design through inexact and approximate arithmetic circuits\",\"authors\":\"Vincent Camus, Jeremy Schlachter, C. Enz\",\"doi\":\"10.1109/NEWCAS.2015.7182028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inexact and approximate circuit design is a promising approach to improve performance and energy efficiency in technology-scaled and low-power digital systems. Such strategy is suitable for error tolerant applications involving perceptive or statistical outputs. This paper reviews two established techniques applicable to arithmetic units: circuit pruning and carry speculation. A critical comparative study is carried out considering several error metrics.\",\"PeriodicalId\":404655,\"journal\":{\"name\":\"2015 IEEE 13th International New Circuits and Systems Conference (NEWCAS)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 13th International New Circuits and Systems Conference (NEWCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEWCAS.2015.7182028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 13th International New Circuits and Systems Conference (NEWCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEWCAS.2015.7182028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Energy-efficient digital design through inexact and approximate arithmetic circuits
Inexact and approximate circuit design is a promising approach to improve performance and energy efficiency in technology-scaled and low-power digital systems. Such strategy is suitable for error tolerant applications involving perceptive or statistical outputs. This paper reviews two established techniques applicable to arithmetic units: circuit pruning and carry speculation. A critical comparative study is carried out considering several error metrics.