微电网低噪声PWM相同步逆变器的设计与仿真

T. Rahman, S. Motakabber, M. Ibrahimy
{"title":"微电网低噪声PWM相同步逆变器的设计与仿真","authors":"T. Rahman, S. Motakabber, M. Ibrahimy","doi":"10.1109/RSM.2017.8069111","DOIUrl":null,"url":null,"abstract":"A microgrid is a clear energy system consisting of demand management, storage, generation system and loads which are capable of operating in parallel or independently with the main power grid. There are some issues in the inverter circuit design which are, high frequency switching loss and noise. In addition, an electrostatic generator generates high voltage DC and low current. Any types of wave distortion or conversation losses of the inverter is a big challenged to use an electrostatic generator as an input energy source for the system. A pulse controller based switching circuit can be designed for increasing the inverter output efficiency. Herein an LCL filter has been designed to limit the THD to 3.2%. In this design, the switching frequency of the inverter is 1.65 kHz, the input supply of the inverter from an electrostatic generator of 10 kVdc, the output load of the inverter is a 100 Ω resistive load, the inverter output voltage is ±10 kVPP and the output supply frequency of the inverter is 50 Hz have been considered. The proposed inverter circuit has been simulated by MATLAB2014a. The conversion efficiency of the inverter without and with filter are observed as 66.2% and 96.8% respectively. The Phase synchronous error for each phase is approximately 5° degrees.","PeriodicalId":215909,"journal":{"name":"2017 IEEE Regional Symposium on Micro and Nanoelectronics (RSM)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Design and simulation of a low noise PWM based phase synchronous inverter for microgrid\",\"authors\":\"T. Rahman, S. Motakabber, M. Ibrahimy\",\"doi\":\"10.1109/RSM.2017.8069111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A microgrid is a clear energy system consisting of demand management, storage, generation system and loads which are capable of operating in parallel or independently with the main power grid. There are some issues in the inverter circuit design which are, high frequency switching loss and noise. In addition, an electrostatic generator generates high voltage DC and low current. Any types of wave distortion or conversation losses of the inverter is a big challenged to use an electrostatic generator as an input energy source for the system. A pulse controller based switching circuit can be designed for increasing the inverter output efficiency. Herein an LCL filter has been designed to limit the THD to 3.2%. In this design, the switching frequency of the inverter is 1.65 kHz, the input supply of the inverter from an electrostatic generator of 10 kVdc, the output load of the inverter is a 100 Ω resistive load, the inverter output voltage is ±10 kVPP and the output supply frequency of the inverter is 50 Hz have been considered. The proposed inverter circuit has been simulated by MATLAB2014a. The conversion efficiency of the inverter without and with filter are observed as 66.2% and 96.8% respectively. The Phase synchronous error for each phase is approximately 5° degrees.\",\"PeriodicalId\":215909,\"journal\":{\"name\":\"2017 IEEE Regional Symposium on Micro and Nanoelectronics (RSM)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Regional Symposium on Micro and Nanoelectronics (RSM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RSM.2017.8069111\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Regional Symposium on Micro and Nanoelectronics (RSM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RSM.2017.8069111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

微电网是一个由需求管理、存储、发电系统和负载组成的清洁能源系统,能够与主电网并联或独立运行。在逆变电路设计中存在着高频开关损耗和噪声问题。静电发生器可以产生高压直流电和小电流。使用静电发生器作为系统的输入能量源,任何类型的波畸变或逆变器的对话损耗都是一个很大的挑战。为了提高逆变器的输出效率,可以设计基于脉冲控制器的开关电路。这里设计了一个LCL滤波器,将THD限制在3.2%。在本设计中,逆变器的开关频率为1.65 kHz,逆变器的输入电源为10kvdc的静电发生器,逆变器的输出负载为100 Ω阻性负载,逆变器的输出电压为±10kvpp,逆变器的输出电源频率为50hz。利用MATLAB2014a对所提出的逆变电路进行了仿真。无滤波器和带滤波器逆变器的转换效率分别为66.2%和96.8%。每个相位的相位同步误差约为5°。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design and simulation of a low noise PWM based phase synchronous inverter for microgrid
A microgrid is a clear energy system consisting of demand management, storage, generation system and loads which are capable of operating in parallel or independently with the main power grid. There are some issues in the inverter circuit design which are, high frequency switching loss and noise. In addition, an electrostatic generator generates high voltage DC and low current. Any types of wave distortion or conversation losses of the inverter is a big challenged to use an electrostatic generator as an input energy source for the system. A pulse controller based switching circuit can be designed for increasing the inverter output efficiency. Herein an LCL filter has been designed to limit the THD to 3.2%. In this design, the switching frequency of the inverter is 1.65 kHz, the input supply of the inverter from an electrostatic generator of 10 kVdc, the output load of the inverter is a 100 Ω resistive load, the inverter output voltage is ±10 kVPP and the output supply frequency of the inverter is 50 Hz have been considered. The proposed inverter circuit has been simulated by MATLAB2014a. The conversion efficiency of the inverter without and with filter are observed as 66.2% and 96.8% respectively. The Phase synchronous error for each phase is approximately 5° degrees.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信