涂层腔内真空度的降低如何影响HfO2/SiO2增透和高反射涂层的激光损伤抗力

E. Field, J. Bellum, D. Kletecka
{"title":"涂层腔内真空度的降低如何影响HfO2/SiO2增透和高反射涂层的激光损伤抗力","authors":"E. Field, J. Bellum, D. Kletecka","doi":"10.1117/12.2194131","DOIUrl":null,"url":null,"abstract":"Optical coatings with the highest laser damage thresholds rely on clean conditions in the vacuum chamber during the coating deposition process. A low base pressure in the coating chamber, as well as the ability of the vacuum system to maintain the required pressure during deposition, are important aspects of limiting the amount of defects in an optical coating that could induce laser damage. Our large optics coating chamber at Sandia National Laboratories normally relies on three cryo pumps to maintain low pressures for e-beam coating processes. However, on occasion, one or more of the cryo pumps have been out of commission. In light of this circumstance, we decided to explore how deposition under compromised vacuum conditions resulting from the use of only one or two cryo pumps affects the laser-induced damage thresholds of optical coatings. The coatings of this study consist of HfO2 and SiO2 layer materials and include antireflection coatings for 527 nm at normal incidence, and high reflection coatings for 527 nm, 45° angle of incidence (AOI), in P-polarization (P-pol).","PeriodicalId":204978,"journal":{"name":"SPIE Laser Damage","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"How reduced vacuum pumping capability in a coating chamber affects the laser damage resistance of HfO2/SiO2 antireflection and high-reflection coatings\",\"authors\":\"E. Field, J. Bellum, D. Kletecka\",\"doi\":\"10.1117/12.2194131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optical coatings with the highest laser damage thresholds rely on clean conditions in the vacuum chamber during the coating deposition process. A low base pressure in the coating chamber, as well as the ability of the vacuum system to maintain the required pressure during deposition, are important aspects of limiting the amount of defects in an optical coating that could induce laser damage. Our large optics coating chamber at Sandia National Laboratories normally relies on three cryo pumps to maintain low pressures for e-beam coating processes. However, on occasion, one or more of the cryo pumps have been out of commission. In light of this circumstance, we decided to explore how deposition under compromised vacuum conditions resulting from the use of only one or two cryo pumps affects the laser-induced damage thresholds of optical coatings. The coatings of this study consist of HfO2 and SiO2 layer materials and include antireflection coatings for 527 nm at normal incidence, and high reflection coatings for 527 nm, 45° angle of incidence (AOI), in P-polarization (P-pol).\",\"PeriodicalId\":204978,\"journal\":{\"name\":\"SPIE Laser Damage\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPIE Laser Damage\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2194131\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE Laser Damage","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2194131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

具有最高激光损伤阈值的光学涂层依赖于涂层沉积过程中真空室的清洁条件。镀膜腔内的低底压以及真空系统在沉积过程中保持所需压力的能力是限制光学镀膜中可能引起激光损伤的缺陷数量的重要方面。我们在桑迪亚国家实验室的大型光学镀膜室通常依靠三个低温泵来维持电子束镀膜过程的低压。然而,有时,一个或多个低温泵已经停止使用。鉴于这种情况,我们决定探索仅使用一个或两个冷冻泵导致的受损真空条件下的沉积如何影响激光诱导光学涂层的损伤阈值。本研究的涂层由HfO2和SiO2层材料组成,包括527 nm的法向增透涂层和45°入射角(AOI)的p偏振(P-pol) 527 nm的高反射涂层。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
How reduced vacuum pumping capability in a coating chamber affects the laser damage resistance of HfO2/SiO2 antireflection and high-reflection coatings
Optical coatings with the highest laser damage thresholds rely on clean conditions in the vacuum chamber during the coating deposition process. A low base pressure in the coating chamber, as well as the ability of the vacuum system to maintain the required pressure during deposition, are important aspects of limiting the amount of defects in an optical coating that could induce laser damage. Our large optics coating chamber at Sandia National Laboratories normally relies on three cryo pumps to maintain low pressures for e-beam coating processes. However, on occasion, one or more of the cryo pumps have been out of commission. In light of this circumstance, we decided to explore how deposition under compromised vacuum conditions resulting from the use of only one or two cryo pumps affects the laser-induced damage thresholds of optical coatings. The coatings of this study consist of HfO2 and SiO2 layer materials and include antireflection coatings for 527 nm at normal incidence, and high reflection coatings for 527 nm, 45° angle of incidence (AOI), in P-polarization (P-pol).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信