基于节能动态积分器的ΔΣ调制器

Ryo Matsushiba, Kazuma Ohara, T. Waho
{"title":"基于节能动态积分器的ΔΣ调制器","authors":"Ryo Matsushiba, Kazuma Ohara, T. Waho","doi":"10.1109/ICECS.2014.7050023","DOIUrl":null,"url":null,"abstract":"An energy-efficient second-order ΔΣ modulator for low-power, low-frequency applications has been demonstrated. It uses a dynamic common-source integrator, where a MOSFET turns off after charge redistribution is completed. Thus, there are virtually no static current flows in the present integrator, reducing the power consumed by the ΔΣ modulator. A chip was fabricated as a proof of concept. A peak signal-to-noise-and-distortion ratio (SNDR) of 70dB was obtained at a sampling frequency of 0.5 MHz with an oversampling ratio (OSR) of 128. We proved that power consumption was proportional to the sampling frequency and that low figure-of-merit (FOM) values were obtained for a relatively wide range of the sampling frequencies, which agrees well with predictions obtained from circuit simulations.","PeriodicalId":133747,"journal":{"name":"2014 21st IEEE International Conference on Electronics, Circuits and Systems (ICECS)","volume":"269 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An energy-efficient dynamic-integrator-based ΔΣ modulator\",\"authors\":\"Ryo Matsushiba, Kazuma Ohara, T. Waho\",\"doi\":\"10.1109/ICECS.2014.7050023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An energy-efficient second-order ΔΣ modulator for low-power, low-frequency applications has been demonstrated. It uses a dynamic common-source integrator, where a MOSFET turns off after charge redistribution is completed. Thus, there are virtually no static current flows in the present integrator, reducing the power consumed by the ΔΣ modulator. A chip was fabricated as a proof of concept. A peak signal-to-noise-and-distortion ratio (SNDR) of 70dB was obtained at a sampling frequency of 0.5 MHz with an oversampling ratio (OSR) of 128. We proved that power consumption was proportional to the sampling frequency and that low figure-of-merit (FOM) values were obtained for a relatively wide range of the sampling frequencies, which agrees well with predictions obtained from circuit simulations.\",\"PeriodicalId\":133747,\"journal\":{\"name\":\"2014 21st IEEE International Conference on Electronics, Circuits and Systems (ICECS)\",\"volume\":\"269 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 21st IEEE International Conference on Electronics, Circuits and Systems (ICECS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICECS.2014.7050023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 21st IEEE International Conference on Electronics, Circuits and Systems (ICECS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECS.2014.7050023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

一种节能二阶ΔΣ调制器低功率,低频应用已被证明。它使用动态共源积分器,其中MOSFET在电荷重新分配完成后关闭。因此,在目前的积分器中几乎没有静态电流流动,减少了ΔΣ调制器消耗的功率。一个芯片被制造出来作为概念的证明。采样频率为0.5 MHz,过采样比为128,峰值信噪比(SNDR)为70dB。我们证明了功耗与采样频率成正比,并且在相对较宽的采样频率范围内获得了较低的性能因数(FOM)值,这与从电路模拟中获得的预测非常吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An energy-efficient dynamic-integrator-based ΔΣ modulator
An energy-efficient second-order ΔΣ modulator for low-power, low-frequency applications has been demonstrated. It uses a dynamic common-source integrator, where a MOSFET turns off after charge redistribution is completed. Thus, there are virtually no static current flows in the present integrator, reducing the power consumed by the ΔΣ modulator. A chip was fabricated as a proof of concept. A peak signal-to-noise-and-distortion ratio (SNDR) of 70dB was obtained at a sampling frequency of 0.5 MHz with an oversampling ratio (OSR) of 128. We proved that power consumption was proportional to the sampling frequency and that low figure-of-merit (FOM) values were obtained for a relatively wide range of the sampling frequencies, which agrees well with predictions obtained from circuit simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信